
Software Description Advant Controller 31
Intelligent Decentralized
Automation System

Operating Manual
907 AC 1131

ABB STOTZ-KONTAKT

Administrator
新建图章

0-1907 AC 1131/Issued: 10/99 Content 5

Contents

1 A Brief Introduction to 907 AC 1131 .. 1-1

1.1 What is 907 AC 1131 .. 1-1

1.2 Overview of 907 AC 1131 Functions.. 1-1

2 What is What in 907 AC 1131 ... 2-1

2.1 Project Components.. 2-1

2.2 Languages .. 2-11
2.2.1 Instruction List (IL).. 2-11
2.2.2 Structured Text (ST)... 2-13
2.2.3 Sequential Function Chart (SFC) ... 2-20
2.2.4 Function Block Diagram (FBD)... 2-25
2.2.5 Ladder Diagram (LD).. 2-26

2.3 Debugging, Online Functions .. 2-28

2.4 The Standard .. 2-29

3 We Write a Little Program .. 3-1

3.1 Controlling a Traffic Signal Unit... 3-1

3.2 Visualizing a Traffic Signal Unit... 3-14

4 The Individual Components ... 4-1

4.1 The Main Window ... 4-1

4.2 Options.. 4-4

4.3 Managing Projects .. 4-14

4.4 Creating and Deleting Objects, etc.. 4-27

4.5 General Editing Functions... 4-35

4.6 General Online Functions.. 4-41

4.7 Window set up... 4-51

4.8 Help when you need it... 4-52

0-2 907 AC 1131/Issued: 10/99Content5

5 Editors in 907 AC 1131..5-1

5.1 The Declaration Editor ...5-1

5.2 The Text Editors ..5-8
5.2.1 The Instruction List Editor ...5-13
5.2.2 The Editor for Structured Text...5-13

5.3 The Graphic Editors...5-14
5.3.1 The Function Block Diagram Editor ..5-16
5.3.2 The Ladder Editor ...5-23
5.3.3 The Sequential Function Chart Editor ...5-29

6 The Resources...6-1

6.1 Overview of the Resources..6-1

6.2 Global Variables ..6-1
6.2.1 Access Variables ..6-2
6.2.2 Global Variables ...6-3
6.2.3 Variable Configuration ..6-3
6.2.4 Document Frame ..6-5

6.3 PLC Configuration ...6-6
6.3.1 Working in the PLC Configuration...6-7
6.3.2 Doing the PROFIBUS-DP Configuration...6-7

6.4 Task Configuration ..6-22

6.5 Sampling Trace ...6-25

6.6 Watch and Receipt Manager ...6-32

7 Library Manager...7-1

8 Visualization...8-1

8.1 Create Visualization...8-1

8.2 Visualization Elements, Insert..8-2

8.3 Working with Visualization Elements ...8-4

8.4 Visualization Elements, Configure ...8-5

8.5 Additional Visualization Element Functions ...8-15

9 DDE Interface ...9-1

10 Appendix ...10-1

0-3907 AC 1131/Issued: 10/99 Content 5

Appendix A: Use of Keyboard ... 10-1

Key Combinations... 10-1

Appendix B: Data types ... 10-5

Standard Data types ... 10-5

Defined Data Types .. 10-6

Appendix C: IEC Operators ... 10-11

Bitstring Operators .. 10-13

Bit-Shift Operators... 10-15

Selection Operators .. 10-19

Comparison Operators.. 10-21

Address Operators .. 10-23

Calling Operator .. 10-24

Type Conversion Functions .. 10-24

Numeric Functions .. 10-30

Appendix D: Standard Library Elements ... 10-35

String Functions .. 10-35

Bistable Function Blocks ... 10-39

Trigger ... 10-41

Counter ... 10-42

Timer ... 10-45

Appendix E: Operands in 907 AC 1131 .. 10-49

Operands .. 10-49

Constants.. 10-49

Variables ... 10-51

Addresses ... 10-52

Functions .. 10-53

0-4 907 AC 1131/Issued: 10/99Content5

Appendix F:Command Line/Command File Commands..10-55

Command Line Commands...10-55

Command File (cmdfile) Commands ..10-55

Appendix G: Error messages ..10-59

11 Index .. i

1-1907 AC 1131/Issued: 10/99 Overview of 907 AC 1131
Functions 5

1 A Brief Introduction to 907 AC 1131

1.1 What is 907 AC 1131

907 AC 1131 is a complete development environment for your PLC.

907 AC 1131 puts a simple approach to the powerful IEC language at the
disposal of the PLC programmer. Use of the editors and debugging functions is
based upon the proven development program environments of advanced
programming languages (such as Visual C++).

1.2 Overview of 907 AC 1131 Functions

How is a project structured?

A project is put into a file named after the project. The first POU (Program
Organization Unit) created in a new project will automatically be named
PLC_PRG. The process begins here (in compliance with the main function in a
C program), and other POUs can be accessed from the same point (programs,
function blocks and functions).

Once you have defined a Task Configuration, it is no longer necessary to create
a program named PLC_PRG. You will find more about this in the Task
Configuration chapter.

There are different kinds of objects in a project: POUs, data types, display
elements (visualizations) and resources. The Object Organizer contains a list of
all the objects in your project.

How do I set up my project?

First you should configure your PLC in order to check the accuracy of the
addresses used in the project.

Then you can create the POUs needed to solve your problem.

Now you can program the POUs you need in the desired languages.

Once the programming is complete, you can compile the project and remove
errors should there be any.

How can I test my project?

Once all errors have been removed, activate the simulation, log in to the
simulated PLC and "load" your project in the PLC. Now you are in Online mode.

Now open the window with your PLC Configuration and test your project for
correct sequence. To do this, enter input variables manually and observe
whether outputs are as expected. You can also observe the value sequence of
the local variables in the POUs. In the Watch and Receipt Manager you can
configure data records whose values you wish to examine.

1-2 907 AC 1131/Issued: 10/99Overview of 907 AC 1131
Functions5

Debugging

In case of a programming error you can set breakpoints. If the process stops at
such a breakpoint, you can examine the values of all project variables at this
point in time. By working through sequentially (single step) you can check the
logical correctness of your program.

Additional Online Functions

An additional debugging function: You can set program variables and inputs
and outputs at certain values. You can use the flow control to check which
program lines have been run. The Sampling Trace allows you to trace and
display the actual course of variables over an extended period of time.

Once the project has been set up and tested, the hardware can be loaded in the
hardware and tested as well. The same online functions you used with the
simulation are available.

Additional 907 AC 1131
Features

The entire project can be documented or exported to a text file at any time.

Summary

907 AC 1131 is a complete development tool used to program your PLC which
will save you a measurable amount of time setting up your applications.

2-1907 AC 1131/Issued: 10/99 What is what in 907 AC 1131 5

2 What is What in 907 AC 1131

This chapter contains a list of the most important concepts to make starting
easier.

2.1 Project Components

Project

A project contains all of the objects in a PLC program. A project is saved in a
file named after the project. The following objects are included in a project:

POUs (Program Organization Units), data types, visualizations, resources, and
libraries.

POU (Program Organization
Unit)

Functions, function blocks, and programs are POUs.

Each POU consists of a declaration part and a body. The body is written in one
of the IEC programming languages which include IL, ST, SFC, FBD and LD.

907 AC 1131 supports all IEC standard POUs. If you want to use these POUs
in your project, you must include the library standard.lib in your project.

POUs can call up other POUs. However, recursions are not allowed.

Function

A function is a POU, which yields exactly one data element (which can consist
of several elements, such as fields or structures) when it is processed, and
whose call in textual languages can occur as an operator in expressions.

When declaring a function do not forget that the function must receive a type.
This means, after the function name, you must enter a colon followed by a type.

A correct function declaration can look like this example:

FUNCTION Fct: INT

In addition, a result must be assigned to the function. That means that function
name is used as an output variable.

A function declaration begins with the keyword FUNCTION and ends with
END_FUNCTION.

Example in IL of a function that takes three input variables and returns the
product of the first two divided by the third:

2-2 907 AC 1131/Issued: 10/99What is what in 907 AC 11315

Image 2.1: Function

The call of a function in ST can appear as an operand in expressions.

Functions do not have any internal conditions. That means that calling up a
function with the same argument (input parameters) always produces the same
value (output).

Examples for calling up the function described above:

in IL:

LD 7
Fct 2,4
ST Result

in ST:

Result := Fct(7, 2, 4);

in FBD:

In SFC a function call can only take place within a step or a transition.

Note: If you define a function in your project with the name CheckBounds,
you can use it to check for range overflows in your project! The name of the
function is defined and may have only this identifier. An example of how this
function is implemented is shown below:

2-3907 AC 1131/Issued: 10/99 What is what in 907 AC 1131 5

Image 2.2: Example of the Implementation of the Function CheckBounds

The following typical program for testing the CheckBounds function goes
beyond the boundaries of a defined array. The CheckBounds functions makes
sure that the value TRUE is not assigned to the position A[10], but rather to the
upper area boundary A[7] which is still valid. Therefore, the CheckBounds
function can be used to correct extensions beyond array boundaries.

Image 2.3: Test Program for the CheckBounds Function

Note: If you define functions in your project with the name CheckDivByte,
CheckDivWord, CheckDivDWord and CheckDivReal, you can use them to
check the value of the divisor if you use the operator DIV, for example to avoid
a division by 0. The names of the functions are fixed, you must use exactly
these terms. See the following example for the implementation of the function
CheckDivReal:

2-4 907 AC 1131/Issued: 10/99What is what in 907 AC 11315

Image 2.4: Example for the implementation of the funciton CheckDivReal

Operator DIV uses the output of function CheckDivReal as Divisor. In a program
like shown in the following example this avoids an division by 0, the divisor (d) is
set from 0 to 1. So the result of the division is 799.

Image 2.5: Example program of the function CheckDivReal

Function Block

A function block is a POU which provides one or more values during the
procedure. As opposed to a function, a function block provides no return value.

A function block declaration begins with the keyword FUNCTION_BLOCK and
ends with END_FUNCTION_BLOCK.

Example in IL of a function block with two input variables and two output
variables. One output is the product of the two inputs, the other a comparison
for equality:

2-5907 AC 1131/Issued: 10/99 What is what in 907 AC 1131 5

Image 2.6: Function Block

Function Block Instances

Reproductions or instances (copies) of a function block can be created.

Each instance possesses its own identifier (the Instance name), and a data
structure which contains its inputs, outputs, and internal variables. Instances are
declared locally or globally as variables, whereas the name of the function block
is indicated as the type of an identifier.

Example of an instance with the name INSTANCE of the FUB function block:

INSTANCE: FUB;

Function blocks are always called through the instances described above.

Only the input and output parameters can be accessed from outside of an
function block instance. This means the internal variables of the function blocks
remain invisible to the user of the function block.

Example for accessing an input variable:

The function block FB has an input variable in1 of the type INT.

PROGRAM prog
VAR

inst1:fb;
END_VAR
LD 17
ST inst1.in1
CAL inst1
END_PROGRAM

The declaration parts of function blocks and programs can contain instance
declarations. Instance declarations are not permitted in functions.

2-6 907 AC 1131/Issued: 10/99What is what in 907 AC 11315

Access to a function block instance is limited to the POU in which it was
declared unless it was declared globally.

The instance name of a function block instance can be used as the input for a
function or a function block.

Note: All values are retained after processing a function block until the next
it is processed. Therefore, function block calls with the same arguments do not
always return the same output values!

Calling a function block

You can use the variables of the function block by entering the instance name,
a point, and then the variable name.

If you would like to set the input parameters when you open the function block,
you can do this in the text languages IL and ST by assigning values to the
parameters after the instance name of the function block in parentheses (this
assignment takes place using ":=" just as with the initialization of variables at
the declaration position).

Examples for calling function block FUB described above:

 The multiplication result is saved in the variable ERG, and the result of the
comparison is saved in QUAD. An instance of FUB with the name INSTANCE is
declared.

In IL the function block is called as shown in the following image:

Image 2.7: Function Block Call in IL

In the example below the call is shown in ST. The declaration part is the same
as with IL:

2-7907 AC 1131/Issued: 10/99 What is what in 907 AC 1131 5

Image 2.8: Function Block Call in ST

In FBD the instance of a function block is called as shown in the following image
(declaration part the same as with IL):

Image 2.9: Function Block Call in FBD

In SFC function block calls can only take place in steps.

Program

A program is a POU which returns several values during operation. Programs
are recognized globally throughout the project. All values are retained from the
last time the program was run until the next.

Image 2.10: Example of a program

Programs can be called. A program call in a function is not allowed. There are
also no instances of programs.

2-8 907 AC 1131/Issued: 10/99What is what in 907 AC 11315

If a POU calls a program, and if thereby values of the program are changed,
then these changes are retained the next time the program is called, even if the
program has been called from within another POU.

This is different from calling a function block. There only the values in the given
instance of a function block are changed.

These changes therefore play a role only when the same instance is called.

A program declaration begins with the keyword PROGRAM and ends with
END_PROGRAM.

Examples of calls of the program described above:

In IL:

CAL PRGExample
LD PRGexample.PAR
ST ERG

in ST:

PRGExample;
Erg := PRGexample.PAR;

In FBD:

Example for a possible call sequence for PLC_PRG:

LD 0
ST PRGexample.PAR (*Default setting for PAR is 0*)
CAL IL call (*ERG in IL call results in 1*)
CAL ST call (*ERG in ST call results in 2*)
CAL FBD call (*ERG in FBD call results in 3*)

If the variable PAR from the program PRGexample is initialized by a main
program with 0, and then one after the other programs are called with above
named program calls, then the ERG result in the programs will have the values
1, 2, and 3. If one exchanges the sequence of the calls, then the values of the
given result parameters also change in a corresponding fashion.

PLC_PRG

The PLC_PRG is a special predefined POU. Each project must contain this
special program. This POU is called exactly once per control cycle.

The first time the "Project" "Object Add" command is used after a new project
has been created, the default entry in the POU dialog box will be a POU named
PLC_PRG of the program type. You should not change this default setting!

If tasks have been defined, then the project may not contain any PLC_PRG,
since in this case the procedure sequence depends upon the task assignment.

2-9907 AC 1131/Issued: 10/99 What is what in 907 AC 1131 5

Attention: Do not delete or rename the POU PLC_PRG
(assuming you are not using a Task Configuration, see chapter Task
Configuration!) PLC_PRG is generally the main program in a single task
program.

Action

Actions can be defined to function blocks and programmes. The action
represents a further implementation which can be entirely created in another
language as the ”normal” implementation. Each action is given a name.

An action works with the data from the function block or programme which it
belongs to. The action uses the same input/output variables and local variables
as the ”normal” implementation uses.

Image 2.11:Example for an action of a function block

In the example given, calling up the function block Counter increases or
decreases the output variable ”out”, depending on the value of the input variable
”in”. Calling up the action Reset of the function block sets the output variable to
zero. The same variable ”out” is written in both cases.

An action is called up with <Program_name>.<Action_name> or
<Instance_name>.<Action_name>. If it is required to call up the action within its
own block, one just uses the name of the action in the text editors and in the
graphic form the function block call up without instance information.

Examples for the calling-up of the above action:

Declaration for all Examples:

PROGRAM PLC_PRG
VAR

Inst : Counter;
END_VAR

In AWL:

2-10 907 AC 1131/Issued: 10/99What is what in 907 AC 11315

CAL Inst.Reset(In := FALSE)
LD Inst.out
ST ERG

In ST:

Inst.Reset(In := FALSE);
Erg := Inst.out;

In FUP:

Note: Actions play an important role in blocks in sequential function charts,
see the chapter 2.2.3 Sequential Function Chart - SFC.

The IEC standard does not recognise actions other than actions of the
sequential function chart.

Resources

You need the resources for configuring and organizing your project and for
tracing variable values:

• Global Variables which can be used throughout the project
• PLC Configuration for configuring your hardware
• Task Configuration for guiding your program through tasks
• Sampling Trace for graphic display of variable values
• Watch and Receipt Manager for displaying variable values and setting

default variable values

See the chapter called "The Resources".

Libraries

You can include in your project a series of libraries whose POUs, data types,
and global variables you can use just like user-defined variables. The library
"standard.lib" is a standard part of the program and is always at your disposal.

See the chapter called "Library Manager".

Data types

Along with the standard data types the user can define his own data types.
Structures, enumeration types and references can be created.

See "Standard" and "Defined data types" in the appendix.

2-11907 AC 1131/Issued: 10/99 What is what in 907 AC 1131 5

Visualization

907 AC 1131 provides visualizations so that you can display your project
variables. You can plot geometric elements off-line with the help of the
visualization. They can then change their form online, depending upon certain
variable values.

See the chapter called "Visualization".

2.2 Languages

2.2.1 Instruction List (IL)

An instruction list (IL) consists of a series of instructions. Each instruction
begins in a new line and contains an operator and, depending on the type of
operation, one or more operands separated by commas.

In front of an instruction there can be an identification mark (label) followed by
a colon (:).

A comment must be the last element in a line. Empty lines can be inserted
between instructions.

Example:

LD 17
ST lint (* comment *)
GE 5
JMPC next
LD idword
EQ istruct.sdword
STN test
next:

Modifiers and operators in IL

In the IL language the following operators and modifiers can be used.

Modifiers:

• C with JMP, CAL, RET: The instruction is only then executed if the
result of the preceding expression is TRUE.

• N with JMPC, CALC, RETC: The instruction is only then executed if the
result of the preceding expression is FALSE.

• N otherwise: Negation of the operand (not of the accumulator)

Below you find a table of all operators in IL with their possible modifiers and the
relevant meaning:

Operator Modifiers Meaning

LD N Make current result equal to the operand

ST N Save current result at the position of the operand

S Then put the Boolean operand exactly at TRUE if
the current result is TRUE

2-12 907 AC 1131/Issued: 10/99What is what in 907 AC 11315

R Then put the Boolean operand exactly at FALSE if
the current result is TRUE

AND N,(Bitwise AND

OR N,(Bitwise OR

XOR N,(Bitwise exclusive OR

ADD (Addition

SUB (Subtraction

MUL (Multiplication

DIV (Division

GT (>

GE (>=

EQ (=

NE (<>

LE (<=

LT (<

JMP CN Jump to the label

CAL CN Call programor function block or

RET CN Leave POU and return to caller.

) Evaluate deferred operation

You find a list of all IEC operators in the appendix.

Example of an IL program while using some modifiers:

LD TRUE (*load TRUE in the accumulator*)
ANDN BOOL1 (*execute AND with the negated value of the BOOL1

variable*)
JMPC mark (*if the result was TRUE, then jump to the label

"mark"*)

LDN BOOL2 (*save the negated value of *)
ST ERG (*BOOL2 in ERG*)
label:
LD BOOL2 (*save the value of *)
ST ERG (*BOOL2 in ERG*)

It is also possible in IL to put parentheses after an operation. The value of the
parenthesis is then considered as an operand.

For example:

LD 2
MUL 2
ADD 3
ST ERG

Here is the value of Erg 7. However, if one puts parentheses:

LD 2
MUL
(

2

2-13907 AC 1131/Issued: 10/99 What is what in 907 AC 1131 5

ADD 3
)
ST ERG

Here the resulting value for Erg is 10, the operation MUL is only then evaluated
if you come to ")"; as operand for MUL 5 is then calculated.

2.2.2 Structured Text (ST)

The Structured Text consists of a series of instructions which, as determined in
high level languages, ("IF..THEN..ELSE") or in loops (WHILE..DO) can be
executed.

Example:

IF value < 7 THEN
WHILE value < 8 DO

 value:=value+1;
END_WHILE;

END_IF;

Expressions

An expression is a construction which returns a value after its evaluation.

Expressions are composed of operators and operands. An operand can be a
constant, a variable, a function call, or another expression.

Valuation of expressions

The evaluation of expression takes place by means of processing the operators
according to certain binding rules. The operator with the strongest binding is
processed first, then the operator with the next strongest binding, etc., until all
operators have been processed.

Operators with equal binding strength are processed from left to right.

Below you find a table of the ST operators in the order of their binding strength:

Operation Symbol Binding strength

Put in parentheses (expression) Strongest binding

Function call Function name
(parameter list)

Exponentiation EXPT

Negate
Building of complements

-

NOT

Multiply

Divide

Modulo

*

/

MOD

Add

Subtract

+
-

Compare <,>,<=,>=

2-14 907 AC 1131/Issued: 10/99What is what in 907 AC 11315

Equal to
Not equal to

=
<>

Boolean AND AND

Boolean XOR XOR

Boolean OR OR Weakest binding

There are the following instructions in ST, arranged in a table together with
example:

Instruction type Example

Assignment A:=B; CV := CV + 1; C:=SIN(X);

Calling a function block and
use of the FB output

CMD_TMR(IN := %IX5, PT := 300);

A:=CMD_TMR.Q

RETURN RETURN;

IF D:=B*B;

IF D<0.0 THEN

 C:=A;

ELSIF D=0.0 THEN

 C:=B;

ELSE

 C:=D;
END_IF;

CASE CASE INT1 OF

1: BOOL1 := TRUE;

2: BOOL2 := TRUE;

ELSE

BOOL1 := FALSE;

BOOL2 := FALSE;

END_CASE;

FOR J:=101;

FOR I:=1 TO 100 BY 2 DO

 IF ARR[I] = 70 THEN

 J:=I;
 EXIT;

 END_IF;

END_FOR;

WHILE J:=1;

WHILE J<= 100 AND ARR[J] <> 70
DO

 J:=J+2;
END_WHILE;

2-15907 AC 1131/Issued: 10/99 What is what in 907 AC 1131 5

REPEAT J:=-1;

REPEAT

 J:=J+2;

UNTIL J= 101 OR ARR[J] = 70

END_REPEAT;

EXIT EXIT;

Empty instruction ;

The name already indicates, the Structured Text is designed for structure
programming, i.e. ST offers predetermined structures for certain often used
constructs such as loops for programming.

This offers the advantages of low error probability and increased clarity of the
program.

For example, let us compare two equally significant program sequences in IL
and ST:

A loop for calculating powers of two in IL:

Loop:
LD Counter

JMPC end
LD Var1
MUL 2
ST Var1

LD Counter
SUB 1
ST Counter
JMP Loop

End:
LD Var1
ST ERG

The same loop programmed in ST would produce:

WHILE counter<>0 DO
Var1:=Var1*2;
Counter:=counter-1;

END_WHILE

Erg:=Var1;

You can see, the loop in ST is not only faster to program, but is also
significantly easier to read, especially in view of the convoluted loops in larger
constructs.

The different structures in ST have the following significance:

2-16 907 AC 1131/Issued: 10/99What is what in 907 AC 11315

Assignment operator

On the left side of an assignment there is an operand (variable, address) to
which is assigned the value of the expression on the right side with the
assignment operator :=

Example:

Var1 := Var2 * 10;

After completion of this line Var1 has the tenfold value of Var2.

Calling function blocks in ST

A function block is called in ST by writing the name of the instance of the
function block and then assigning the values of the parameters in parentheses.
In the following example a timer is called with assignments for the parameters
IN and PT. Then the result variable Q is assigned to the variable A.

The result variable, as in IL, is addressed with the name of the function block, a
following point, and the name of the variable:

CMD_TMR(IN := %IX5, PT := 300);
A:=CMD_TMR.Q

RETURN instruction

The RETURN instruction can be used to leave a POU, for example depending
on a condition

IF instruction

With the IF instruction you can check a condition and, depending upon this
condition, execute instructions.

Syntax:

IF <Boolean_expression1> THEN
 <IF_instructions>
{ELSIF <Boolean_expression2> THEN
 <ELSIF_instructions1>
.
.
ELSIF <Boolean_expression n> THEN
 <ELSIF_instructions n-1>
ELSE
 <ELSE_instructions>}
END_IF;

The part in braces {} is optional.

If the <Boolean_expression1> returns TRUE, then only the <IF_Instructions>
are executed and none of the other instructions.

Otherwise the Boolean expressions, beginning with <Boolean_expression2>,
are evaluated one after the other until one of the expressions returns TRUE.
Then only those instructions after this Boolean expression and before the next
ELSE or ELSIF are evaluated.

2-17907 AC 1131/Issued: 10/99 What is what in 907 AC 1131 5

If none of the Boolean expressions produce TRUE, then only the
<ELSE_instructions> are evaluated.

Example:

IF temp<17
THEN heating_on := TRUE;
ELSE heating_on := FALSE;
END_IF;

Here the heating is turned on when the temperature sinks below 17 degrees.
Otherwise it remains off.

CASE instruction

With the CASE instructions one can combine several conditioned instructions
with the same condition variable in one construct.

Syntax:

CASE <Var1> OF
<Value1>: <Instruction 1>
<Value2>: <Instruction 2>
<Value3, Value4, Value5>: <Instruction 3>
<Value6 .. Value10>: <Instruction 4>
 ...
<Value n>: <Instruction n>
ELSE <ELSE instruction>
END_CASE;

A CASE instruction is processed according to the following model:

• If the variable in <Var1> has the value <Value i>, then the instruction
<Instruction i> is executed.

• If <Var 1> has none of the indicated values, then the <ELSE Instruction>
is executed.

• If the same instruction is to be executed for several values of the
variables, then one can write these values one after the other separated
by commas, and thus condition the common execution.

• If the same instruction is to be executed for a value range of a variable,
one can write the initial value and the end value separated by two dots
one after the other. So you can condition the common condition.

Example:

CASE INT1 OF
1, 5: BOOL1 := TRUE;

BOOL3 := FALSE;
2: BOOL2 := FALSE;

BOOL3 := TRUE;
10..20: BOOL1 := TRUE;

BOOL3:= TRUE;
ELSE

BOOL1 := NOT BOOL1;
BOOL2 := BOOL1 OR BOOL2;

END_CASE;

2-18 907 AC 1131/Issued: 10/99What is what in 907 AC 11315

FOR loop

With the FOR loop one can program repeated processes.

Syntax:

INT_Var :INT;

FOR <INT_Var> := <INIT_VALUE> TO <END_VALUE> {BY <Step size>}
DO

 <Instructions>
END_FOR;

The part in braces {} is optional.

The <Instructions> are executed as long as the counter <INT_Var> is not
greater than the <END_VALUE>. This is checked before executing the
<Instructions> so that the <instructions> are never executed if <INIT_VALUE>
is greater than <END_VALUE>.

When <Instructions> are executed, <INT_Var> is always increased by <Step
size>. The step size can have any integer value. If it is missing, then it is set to
1. The loop must also end since <INT_Var> only becomes greater.

Example:

FOR Counter:=1 TO 5 BY 1 DO
Var1:=Var1*2;
END_FOR;
Erg:=Var1;

Let us assume that the default setting for Var1 is the value 1. Then it will have
the value 32 after the FOR loop.

Note: <END_VALUE> must not be equal to the limit value of the counter
<INT_VAR>. For example: If the variable Counter is of type SINT and if
<END_VALUE> is 127, you will get an endless loop.

WHILE loop

The WHILE loop can be used like the FOR loop with the difference that the
break-off condition can be any Boolean expression. This means you indicate a
condition which, when it is fulfilled, the loop will be executed.

Syntax:

WHILE <Boolean expression>
 <Instructions>
END_WHILE;

The <Instructions> are repeatedly executed as long as the
<Boolean_expression> returns TRUE. If the <Boolean_expression> is already
FALSE at the first evaluation, then the <Instructions> are never executed. If

2-19907 AC 1131/Issued: 10/99 What is what in 907 AC 1131 5

<Boolean_expression> never assumes the value FALSE, then the
<Instructions> are repeated endlessly which causes a relative time delay.

Note: The programmer must make sure that no endless loop is caused. He
does this by changing the condition in the instruction part of the loop, for
example, by counting up or down one counter.

Example:

WHILE counter<>0 DO
Var1 := Var1*2;
Counter := Counter-1;

END_WHILE

The WHILE and REPEAT loops are, in a certain sense, more powerful than the
FOR loop since one doesn’t need to know the number of cycles before
executing the loop. In some cases one will, therefore, only be able to work with
these two loop types. If, however, the number of the loop cycles is clear, then a
FOR loop is preferable since it allows no endless loops.

REPEAT loop

The REPEAT loop is different from the WHILE loop because the break-off
condition is checked only after the loop has been executed. This means that the
loop will run through at least once, regardless of the wording of the break-off
condition.

Syntax:

REPEAT
 <Instructions>
UNTIL <Boolean expression>
END_REPEAT;

The <Instructions> are carried out until the <Boolean expression> returns
TRUE.

If <Boolean expression> is produced already at the first TRUE evaluation, then
<Instructions> are executed only once. If <Boolean_expression> never
assumes the value TRUE, then the <Instructions> are repeated endlessly which
causes a relative time delay.

Note: The programmer must make sure that no endless loop is caused. He
does this by changing the condition in the instruction part of the loop, for
example by counting up or down one counter.

Example:

REPEAT
Var1 := Var1*2;
Counter := Counter-1;

UNTIL
Counter=0

2-20 907 AC 1131/Issued: 10/99What is what in 907 AC 11315

END_REPEAT;

EXIT instruction

If the EXIT instruction appears in a FOR, WHILE, or REPEAT loop, then the
innermost loop is ended, regardless of the break-off condition.

2.2.3 Sequential Function Chart (SFC)

The Sequential Function Chart is a graphically oriented language which makes
it possible to describe the chronological order of different actions within a
program.

Image 2.12: Network in SFC

Step

A POU written in a Sequential Function Chart consists of a series of steps
which are connected with each other through directed connections (transitions).

There are two types of steps.

• The simplified type consists of an action and a flag which shows if the step
is active. If the action of a step is implemented, then a small triangle
appears in upper right corner of the step.

• An IEC step consists of a flag and one or more assigned actions or
boolean variables. The associated actions appear to the right of the step.
For detailled information see Chapter ’The Sequential Function Chart
Editor’.

2-21907 AC 1131/Issued: 10/99 What is what in 907 AC 1131 5

Action

An action can contain a series of instructions in IL or in ST, a lot of networks in
FBD or in LD, or again in Sequential Function Chart (SFC).

With the simplified steps an action is always connected to a step. In order to
edit an action, click twice with the mouse on the step to which the action
belongs. Or select the step and select the menu command "Extras" "Zoom
Action/Transition".

Actions of IEC steps hang in the Object Organizer directly under their SFC-POU
and are loaded with a doubleclick or by pressing <Enter> in their editor. New
actions can be created with "Project" "Add Action".

Entry or exit actionf

You can add an entry action and an exit action to a step. An entry action is
executed only once, right after the step has become active. An exit action is
executed only once before the step is deactivated.

A step with entry action is indicated by an "E" in the lower left corner, the exit
action by an "X" in the lower right corner.

The entry and exit action can be implemented in any language. In order to edit
an entry or exit action, doubleclick in the corresponding corner in the step with
the mouse.

Example of a step with entry and exit action:

Transition / Transition condition

Between the steps there are so-called transitions.

A transition condition can be a Boolean variable, a boolean address, a boolean
constant, or a series of instructions with a Boolean result in ST syntax (i.e. (i <=
100) AND b) or fully programmed in any language.

Active step

After calling the SFC POU, the action (surrounded by a double border)
belonging to the initial step is executed first. A step, whose action is being
executed, is called active. If the step is active, then the appropriate action is
executed once per cycle. In Online mode active steps are shown in blue.

In a control cycle all actions are executed which belong to active steps.
Thereafter the respective following steps of the active steps become active if
the transition conditions of the following steps are TRUE. The currently active
steps will be executed in the next cycle.

2-22 907 AC 1131/Issued: 10/99What is what in 907 AC 11315

IEC step

Along with the simplified steps the standard IEC steps in SFC are available.

Any number of actions can be assigned to an IEC step. The actions of IEC
steps lie separated from the steps and can be used repeatedly within their POU.
For this they must be associated to the single steps with the command "Extras"
"Associate action".

Along with actions, Boolean variables can be assigned to steps. Through the
so-called qualifiers the actions and Boolean variables are activated and
deactivated, partially with time delays. Since an action can still be active, even if
the next step has been processed, for example through the qualifier S (Set),
one can achieve concurrent processes.

An associated boolean variable is set or reset with each call of the AS. That
means, that with each call it gets the value TRUE or FALSE.

The actions associated with an IEC step are shown at the right of the step in a
two-part box. The left field contains the qualifier, possibly with time constant,
and the right field contains the action name respectively boolean variable name.

Note: If an action has been inactivated, it will be executed once more. That
means, that each action is executed at least twice (also an action with qualifier
P).

In case of a call first the deactivated actions, then the active actions are
executed, in alphabetical order each time.

An example for an IEC step with two actions:

In order to make it easier to follow the processes, all active actions in online
mode are shown in blue like the active steps. After each cycle a check is made
to see which actions are active.

Whether a newly inserted step is an IEC step depends upon whether the menu
command "Extras" "Use IEC-Steps" has been chosen.

In the Object Organizer the actions hang directly underneath their respective
SFC POUs. New actions can be created with "Project" "Add Action".

In order to use IEC steps you must include in your project the special SFC
library Iecsfc.lib .

2-23907 AC 1131/Issued: 10/99 What is what in 907 AC 1131 5

Image 2.13: SFC POU with actions in the Object Organizer

Qualifier

In order to associate the actions with IEC steps the following qualifiers are
available:

N Non-stored The action is active as long as the step
R overriding

Reset
The action is deactivated

S Set (Stored) The action is activated and remains active until a
Reset

L time Limited The action is activated for a certain time,
maximum as long as the step is active

D time Delayed The action becomes active after a certain time if
the step is still active and then it remains active
as long as the step is active.

P Pulse The action is executed just one time if the step is
active

SD Stored and time
Delayed

The action is activated after a certain time and
remains active until a Reset

DS Delayed and
Stored

The action is activated after a certain time as
long as the step is still active and remains active
up to a Reset

SL Stored and time
limited

The action is activated for a certain time

The qualifiers L, D, SD, DS and SL need a time value in the TIME constant
format.

Implicit variables in SFC

There are implicitly declared variables in the SFC which can be used.

A flag belongs to each step which stores the state of the step. The step flag
(active or inactive state of the step) is called <StepName>.x for IEC steps or
just <StepName> for the simplified steps. This Boolean variable has the value
TRUE when the associated step is active and FALSE when it is inactive. It can
be used in every action and transition of the SFC block.

One can make an enquiry with the variable <ActionName>.x. as to whether an
IEC action is active or not.

Note: During the deactivation of the IEC action the variable already has the
value FALSE.

2-24 907 AC 1131/Issued: 10/99What is what in 907 AC 11315

For IEC steps the implicit variables <StepName>.t can be used to enquire
about the active time of the steps.

SFC Flags

If a step is active in SFC for longer than its attributes state, some special flags
are set. There are also variables which can be set in order to control the
program flow in the sequential function chart. To use the flags it is necessary,
somewhere, globally or locally, to declare them as output or input variables.

SFCEnableLimit: This variable is of the type BOOL. When it has the value
TRUE, the timeouts of the steps will be registered in SFCError. Other timeouts
will be ignored.

SFCInit: This variable is also of the type BOOL. When the variable has the
value TRUE the sequential function chart is set back to the Init step and the
other SFC flags are reset. The Init step remains active, but is not executed, for
as long as the variable has the value TRUE. It is only when SFCInit is again set
to FALSE that the block can be processed normally again.

SFCQuitError: A variable of the type BOOL. Execution of the SFC diagram is
stopped for as long as the variable has the value TRUE whereby a possible
timeout in the variable SFCError is reset. All previous times in the active steps
are reset when the variable again assumes the value FALSE.

SFCPause: A variable of the type BOOL. Execution of the SFC diagram is
stopped for as long as the variable has the value TRUE.

SFCError: This Boolean variable is set when a timeout has occurred in a SFC
diagram.

SFCTrans: This variable is of the type BOOL. The variable takes on the value
TRUE when a transition is actuated.

SFCErrorStep: This variable is of the type STRING. In this variable the name of
the step is stored which has caused a timeout to occur.

SFCErrorPOU: This variable of the type STRING contains the name of the
block in which a timeout has occurred.

SFCCurrentStep: This variable is of the type STRING. The name of the step is
stored in this variable which is active, independently of the time monitoring. In
the case of simultaneous sequences the step is stored in the branch on the
outer right.

No further timeout will be registered if a timeout occurs and the variable
SFCError is not reset again.

Alternative branch

Two or more branches in SFC can be defined as alternative branches. Each
alternative branch must begin and end with a transition. Alternative branches
can contain parallel branches and other alternative branches. An alternative

2-25907 AC 1131/Issued: 10/99 What is what in 907 AC 1131 5

branch begins at a horizontal line (alternative beginning) and ends at a
horizontal line (alternative end) or with a jump.

If the step which precedes the alternative beginning line is active, then the first
transition of each alternative branch is evaluated from left to right. The first
transition from the left whose transition condition has the value TRUE is opened
and the following steps are activated (see active step).

Parallel branch

Two or more branches in SFC can be defined as parallel branches. Each
parallel branch must begin and end with a step. Parallel branches can contain
alternative branches or other parallel branches. A parallel branch begins with a
double line (parallel beginning) and ends with a double line (parallel end) or with
a jump.

If the parallel beginning line of the previous step is active and the transition
condition after this step has the value TRUE, then the first steps of all parallel
branches become active (see active step). These branches are now processed
parallel to one another. The step after the parallel end line becomes active
when all previous steps are active and the transition condition before this step
produces the value TRUE.

Jump

A jump is a connection to the step whose name is indicated under the jump
symbol. Jumps are required because it is not allowed to create connections
which lead upward or cross each other.

2.2.4 Function Block Diagram (FBD)

The Function Block Diagram is a graphically oriented programming language. It
works with a list of networks whereby each network contains a structure which
represents either a logical or arithmetic expression, the call of a function block,
a jump, or a return instruction.

An example of a typical network in the Function Block Diagram as it could
appear in 907 AC 1131 :

Image 2.14: Network in Function Block Diagram

See also chapter ’The Continuous Function Chart Editor’ at ’The Editors in
907 AC 1131 ’.

2-26 907 AC 1131/Issued: 10/99What is what in 907 AC 11315

2.2.5 Ladder Diagram (LD)

The Ladder Diagram is also a graphics oriented programming language which
approaches the structure of an electric circuit.

On the one hand, the Ladder Diagram is suitable for constructing logical
switches, on the other hand one can also create networks as in FBD. Therefore
the LD is very useful for controlling the call of other POUs. For more information
see Chapter ’The Editors in 907 AC 1131, The Ladder Editor’ .

The Ladder Diagram consists of a series of networks. A network is limited on
the left and right sides by a left and right vertical current line. In the middle is a
circuit diagram made up of contacts, coils, and connecting lines.

Each network consists on the left side of a series of contacts which pass on
from left to right the condition "ON" or "OFF" which correspond to the Boolean
values TRUE and FALSE. To each contact belongs a Boolean variable. If this
variable is TRUE, then the condition is passed from left to right along the
connecting line. Otherwise the right connection receives the value OFF.

Example of a typical network in the Ladder Diagram as it could appear in
907 AC 1131 :

Image 2.15: Network in a Ladder Diagram made up of Contacts and Coils

Contact

Each network in LD consists on the left side of a network of contacts (contacts
are represented by two parallel lines: | |) which from left to right show the
condition "On" or "Off".

These conditions correspond to the Boolean values TRUE and FALSE. A
Boolean variable belongs to each contact. If this variable is TRUE, then the
condition is passed on by the connecting line from left to right, otherwise the
right connection receives the value "Out".

Contacts can be connected in parallel, then one of the parallel branches must
transmit the value "On" so that the parallel branch transmits the value "On"; or
the contacts are connected in series, then contacts must transmit the condition
"On" so that the last contact transmits the "On" condition. This therefore
corresponds to an electric parallel or series circuit.

2-27907 AC 1131/Issued: 10/99 What is what in 907 AC 1131 5

A contact can also be negated, recognizable by the slash in the contact symbol:
|/|. Then the value of the line is transmitted if the variable is FALSE.

Coil

On the right side of a network in LD there can be any number of so-called coils
which are represented by parentheses:(). They can only be in parallel. A coil
transmits the value of the connections from left to right and copies it in an
appropriate Boolean variable. At the entry line the value ON (corresponds to the
Boolean variable TRUE) or the value OFF (corresponding to FALSE) can be
present.

Contacts and coils can also be negated (in the example the contact SWITCH1
and the coil %QX3.0 is negated). If a coil is negated (recognizable by the slash
in the coil symbol: (/)), then it copies the negated value in the appropriate
Boolean variable. If a contact is negated, then it connects through only if the
appropriate Boolean value is FALSE.

Function blocks in the Ladder
Diagram

Along with contacts and coils you can also enter function blocks and programs.
In the network they must have an input and an output with Boolean values and
can be used at the same places as contacts, that is on the left side of the LD
network

Set/Reset coils

Coils can also be defined as set or reset coils. One can recognize a set coil by
the "S" in the coil symbol: (S)) It never writes over the value TRUE in the
appropriate Boolean variable. That is, if the variable was once set at TRUE,
then it remains so.

One can recognize a reset coil by the "R" in the coil symbol: (R)) It never writes
over the value FALSE in the appropriate Boolean variable: If the variable has
been once set on FALSE, then it remains so.

LD as FBD

When working with LD it is very possible that you will want to use the result of
the contact switch for controlling other POUs. On the one hand you can use the
coils to put the result in a global variable which can then be used in another
place. You can, however, also insert the possible call directly into your LD
network. For this you introduce a POU with EN input.

Such POUs are completely normal operands, functions, programs, or function
blocks which have an additional input which is labeled with EN. The EN input is
always of the BOOL type and its meaning is: The POU with EN input is
evaluated when EN has the value TRUE.

An EN POU is wired parallel to the coils, whereby the EN input is connected to
the connecting line between the contacts and the coils. If the ON information is
transmitted through this line, this POU will be evaluated completely normally.

2-28 907 AC 1131/Issued: 10/99What is what in 907 AC 11315

Starting from such an EN POU, you can create networks similar to FBD.

Image 2.16: Part of a LD Network with an EN POU

2.3 Debugging, Online Functions

 Sampling Trace

The Sampling Trace allows you to trace the value sequence of variables,
depending upon the so-called trigger event. This is the rising edge or falling
edge of a previously defined Boolean variable (trigger variable). 907 AC 1131
permits the tracing of up to 20 variables. 500 values can be traced for each
variable. The trace buffer has a size of 4990 Bytes.

Debugging

The debugging functions of 907 AC 1131 make it easier for you to find errors.

In order to debug, run the command "Project" "Options" and in the dialog box
that pops up under Build options select the item Debugging.

Breakpoint

A breakpoint is a place in the program at which the processing is stopped. Thus
it is possible to look at the values of variables at specific places within the
program.

Breakpoints can be set in all editors. In the text editors breakpoints are set at
line numbers, in FBD and LD at network numbers, and in SFC at steps.

Single step

Single step means:

• In IL: Execute the program until the next CAL, LD or JMP command.
• In ST: Execute the next instruction.
• In FBD, LD: Execute the next network.
• In SFC: Continue the action until the next step.

By proceeding step by step you can check the logical correctness of your
program.

Single Cycle

If Single cycle has been chosen, then the execution is stopped after each cycle.

2-29907 AC 1131/Issued: 10/99 What is what in 907 AC 1131 5

Change values online

During operations variables can be set once at a certain value (write value) or
also described again with a certain value after each cycle (forcing). In online
mode one also can change the variable value by double click on the value. By
that boolean variables change from TRUE to FALSE or the other way round, for
each other types of variables one gets the dialog Write Variable xy, where the
actual value of the variable can be edited.

Monitoring

In addition to the variable declarations visible on the screen, the current values
from the PLC are continuously read and displayed.

In Online mode 907 AC 1131 monitors all variables visible on the screen. At
the same time variables can be put together in the Watch and Receipt Manager
whose data you would like to see all in one place.

Simulation

During the simulation the created PLC program is not processed in the PLC, but
rather in the calculator on which 907 AC 1131 is running. All online functions
are available. That allows you to test the logical correctness of your program
without PLC hardware.

Note: POUs of external libraries are not running in simulation mode !

2.4 The Standard

The standard IEC 1131-3 is an international standard for programming
languages of Programmable Logic Controllers.

The programming languages offered in 907 AC 1131 conform to the
requirements of the standard.

According to this standard, a program consists of the following elements:

• Structures
• POUs
• Global Variables

The processing of a 907 AC 1131 program begins with the special POU
PLC_PRG. The POU PLC_PRG can call other POUs.

2-30 907 AC 1131/Issued: 10/99What is what in 907 AC 11315

3-1907 AC 1131/Issued: 10/99 5We Write a Little Program

3 We Write a Little Program

3.1 Controlling a Traffic Signal Unit

Let us now start to write a small example program. It is for a simple traffic signal
unit which is supposed to control two traffic signals at an intersection. The
red/green phases of both traffic signals alternate and, in order to avoid
accidents, we will insert yellow or yellow/red transitional phases. The latter will
be longer than the former. We further imagine the use of a Profibus system and
will do the corresponding configuration.

In this example you will see how time dependent programs can be shown with
the language resources of the IEC1131-3 standard, how one can edit the
different languages of the standard with the help of 907 AC 1131 , and how one
can easily connect them while becoming familiar with the simulation of
907 AC 1131 .

Create POU

Starting always is easy: Start 907 AC 1131 and choose "File" "New".

In the dialog box which appears, the first POU has already been given the
default name PLC_PRG. Keep this name, and the type of POU should definitely
be a program. Each project needs a program with this name. In this case we
choose as the language of this POU the Structured Text (ST).

Now create three more objects with the command "Project" "Object Add" with
the menu bar or with the context menu (press right mouse button in the Object
Organizer). A program in the language Sequential Function Chart (SFC) named
SEQUENCE, a function block in the language Function Block Diagram (FBD)
named TRAFFICSIGNAL, along with a POU WAIT, also of the type function
block, which we want to program as an Instruction List (IL).

What does TRAFFICSIGNAL
do?

In the POU TRAFFICSIGNAL we will assign the individual trafficsignal phases
to the lights, i.e. we will make sure that the red light is lit red in the red phase
and in the yellow/red phase, the yellow light in the yellow and yellow/red
phases, etc.

What does WAIT do?

In WAIT we will program a simple timer which as input will receive the length of
the phase in milliseconds, and as output will produce TRUE as soon as the time
period is finished.

What does SEQUENCE do?

In SEQUENCE all is combined so that the right light lights up at the right time
for the desired time period.

3-2 907 AC 1131/Issued: 10/99We Write a Little Program5

What does PLC_PRG do?

In PLC_PRG the input start signal is connected to the traffic lights’ sequence
and the "color instructions" for each lamp are provided as outputs.

"TRAFFICSIGNAL" declaration

Let us now turn to the POU TRAFFICSIGNAL. In the declaration editor you
declare as input variable (between the keywords VAR_INPUT and END_VAR) a
variable named STATUS of the type INT. STATUS will have four possible
conditions, that is one for the TRAFFICSIGNAL phases green, yellow,
yellow/red andred.

Correspondingly our TRAFFICSIGNAL has three outputs, that is RED,
YELLOW and GREEN. You should declare these three variables. Then the
declaration part of our function block TRAFFICSIGNAL will look like this:

Image 3.1: Function block TRAFFICSIGNAL, declaration part

"TRAFFICSIGNAL" body

Now we determine the values of the output variables depending on the input
STATUS of the POU. To do this go into the body of the POU. Click on the field
to the left beside the first network (the gray field with the number 1). You have
now selected the first network. Choose the menu item "Insert" "Operator".

In the first network a box is inserted with the operator AND and two inputs:

Click on the text AND with the mouse pointer and change the text into EQ.
Select the three question marks from the upper of the two inputs and enter the
variable STATUS. Then select the lower of the three question marks and put a
1 underneath it. You get the following network:

3-3907 AC 1131/Issued: 10/99 5We Write a Little Program

Click now on a place behind the EQ Box. Now the output of the EQ operation is
selected. Choose "Insert" "Assignment". Change the three question marks
??? to GREEN. You now have created a network with the following structure:

STATUS is compared with 1, the result is assigned to GREEN. This network
thus switches to GREEN if the preset state value is 1.

For the other TRAFFICSIGNAL colors we need two more networks. You create
them with the command "Insert" "Network (after)". These networks should be
set up as in the example. The finished POU now looks like follows:

Image 3.2: Function block TRAFFICSIGNAL, instruction part

3-4 907 AC 1131/Issued: 10/99We Write a Little Program5

In order to insert an operator in front of another operator, you must select the
place where the input to which you want to attach the operator feeds into the
box.

Then use the command "Insert" "Operator". Otherwise you can set up these
networks in the same way as the first network.

Now our first POU has been finished. TRAFFICSIGNAL, according to the input
of the value STATUS, controls whichever light color we wish.

Connecting the standard.lib

For the timer in the POU WAIT we need a POU from the standard library.
Therefore, open the library manager with "Window" "Library Manager".
Choose "Insert" "Additional library". The dialog box appears for opening
files. From the list of the libraries choose standard.lib.

"WAIT" declaration

Now let us turn to the POU WAIT. This POU is supposed to become a timer
with which we can determine the length of the time period of each
TRAFFICSIGNAL phase. Our POU receives as input variable a variable TIME
of the type TIME, and as output it produces a Boolean value which we want to
call OK and which should be TRUE when the desired time period is finished.
We set this value with FALSE by inserting at the end of the declaration (before
the semicolon, however) " := FALSE ".

For our purposes we need the POU TP, a clock generator. This has two inputs
(IN, PT) and two outputs (Q, ET). TP does the following:

As long as IN is FALSE, ET is 0 and Q is FALSE. As soon as IN provides the
value TRUE, the time is calculated at the output ET in milliseconds. When ET
reaches the value PT, then ET is no longer counted. Meanwhile Q produces
TRUE as long as ET is smaller than PT. As soon as the value PT has been
reached, then Q produces FALSE again. In addition you will find a short
description of all POUs from the standard library in the appendix.

In order to use the POU TP in the POU WAIT we must create a local instance
from TP. For this we declare a local variable ZAB (for elapsed time) of the type
TP (between the keywords VAR, END_VAR).

The declaration part of WAIT thus looks like this:

3-5907 AC 1131/Issued: 10/99 5We Write a Little Program

Image 3.3: Function Block WAIT, Declaration Part

"WAIT" body

In order to create the desired timer, the body of the POU must be programmed
as follows:

Image 3.4: Function Block WAIT, Instruction Part

At first it is checked whether Q has already been set at TRUE (as though the
counting had already been executed), in this case we change nothing with the
occupation of ZAB, but we call the function block ZAB without input (in order to
check whether the time period is already over).

Otherwise we set the variable IN in ZAB at FALSE, and therefore at the same
time ET at 0 and Q at FALSE. In this way all variables are set at the desired
initial condition. Now we assign the necessary time from the variable TIME into
the variable PT, and call ZAB with IN:=TRUE. In the function block ZAB the
variable ET is now calculated until it reaches the value TIME, then Q is set at
FALSE.

The negated value of Q is saved in OK after each execution of WAIT. As soon
as Q is FALSE, then OK produces TRUE.

The timer is finished at this point. Now it is time to combine our two function
blocks WAIT and TRAFFICSIGNAL in the main program PLC_PRG.

"SEQUENCE" first expansion
level

First we declare the variables we need. They are: an input variable START of
the type BOOL, two output variables TRAFFICSIGNAL1 and
TRAFFICSIGNAL2 of the type INT and one of the type WAIT (DELAY as delay).
The program SEQUENCE now looks like shown here:

3-6 907 AC 1131/Issued: 10/99We Write a Little Program5

Image 3.5: Program Sequence, First Expansion Level, Declaration Part

Create a SFC diagram

The beginning diagram of a POU in SFC always consists of an action "Init" of a
following transition "Trans0" and a jump back to Init. We have to expand that.

Before we program the individual action and transitions let us first determine the
structure of the diagrams. We need one step for each TRAFFICSIGNAL phase.
Insert it by marking Trans0 and choosing "Insert" "Step transition (after)".
Repeat this procedure three more times.

If you click directly on the name of a transition or a step, then this is marked and
you can change it. Name the first transition after Init "START", and all other
transitions "DELAY.OK".

The first transition switches through when START is TRUE and all others switch
through when DELAY in OK produces TRUE, i.e. when the set time period is
finished.

The steps (from top to bottom) receive the names Switch1, Green2, Switch2,
Green1, whereby Init of course keeps its Name. "Switch" should include a
yellow phase, at Green1 TRAFFICSIGNAL1 will be green, at Green2
TRAFFICSIGNAL2 will be green. Finally change the return address of Init after
Switch1. If you have done everything right, then the diagram should look like in
the following image:

3-7907 AC 1131/Issued: 10/99 5We Write a Little Program

Image 3.6: Program SEQUENCE, First Expansion Level, Instruction Part

Now we have to finish the programming of the individual steps. If you
doubleclick on the field of a step, then you get a dialog for opening a new
action. In our case we will use IL (Instruction List).

Actions and transition
conditions

In the action of the step Init the variables are initialized, the STATUS of
TRAFFICSIGNAL1 should be 1 (green). The state of TRAFFICSIGNAL2 should
be 3 (red). The action Init then looks like in the following image:

3-8 907 AC 1131/Issued: 10/99We Write a Little Program5

Image 3.7: Action Init

Switch1 changes the sate of TRAFFICSIGNAL1 to 2 (yellow), and that of
TRAFFICSIGNAL2 to 4 (yellow-red). In addition, a time delay of 2000
milliseconds is set. The action is now as follows:

Image 3.8: Action Switch1

With Green2 TRAFFICSIGNAL1 is red (STATUS:=3), TRAFFICSIGNAL2 green
(STATUS:=1), and the delay time is 5000 milliseconds.

Image 3.9: Action Green2

At Switch2 the STATUS of TRAFFICSIGNAL1 changes to 4 (yellow-red), that
of TRAFFICSIGNAL2 to 2 (yellow). A time delay of 2000 milliseconds is now
set.

Image 3.10: Action Switch2

With Green1 TRAFFICSIGNAL1 is green (STATUS:=1), TRAFFICSIGNAL2 is
red (STATUS:=3), and the time delay is set to5000 milliseconds.

Image 3.11: Action Green1

3-9907 AC 1131/Issued: 10/99 5We Write a Little Program

The first expansion phase of our program is completed. Now you can compile it
and also test the simulation.

"SEQUENCE" second
expansion level

In order to ensure that our diagram has at least one alternative branch, and so
that we can turn off our traffic light unit at night, we now include in our program
a counter which, after a certain number of TRAFFICSIGNAL cycles, turns the
unit off.

At first we need a new variable COUNTER of the type INT. Declare this as
usual in the declaration part of PLC_PRG, and initialize it in Init with 0.

Image 3.12: Action Init, Second Version

Now select the transition after Switch1 and insert a step and then a transition.
Select the resulting transition and insert an alternative branch to its left. After
the left transition insert a step and a transition. After the resulting new transition
insert a jump after Switch1.

Name the new parts as follows: the upper of the two new steps should be called
"Count" and the lower "Off". The transitions are called (from top to bottom and
from left to right) EXIT, TRUE and DELAY.OK. The new part should look like
the part marked with the black border in the following image:

3-10 907 AC 1131/Issued: 10/99We Write a Little Program5

Image 3.13: Program SEQUENCE, Second Expansion Level, Instruction Part

Now two new actions and a new transition condition are to be implemented. At
the step Count the variable COUNTER is increased by one:

Image 3.14: Action Count

The EXIT transition checks whether the counter is greater than a certain value,
for example 7:

Image 3.15: Transition EXIT

3-11907 AC 1131/Issued: 10/99 5We Write a Little Program

At Off the state of both lights is set at 5(OFF), (or each other number not equal
1,2,3 or 4) the COUNTER is reset to 0, and a time delay of 10 seconds is set:

Image 3.16: Action Off

The result

In our hypothetical situation, night falls after seven TRAFFICSIGNAL cycles, for
ten seconds the TRAFFICSIGNAL turns itself off, then we have daylight again,
the traffic light unit turns itself on again, and the whole process starts again from
the beginning.

PLC_PRG

We have defined and correlated the time sequencing of the phases for both
sets of traffic lights in the block SEQUENCE. Since, however, we see the traffic
lights system as a PROFIBUS-DP system and wish to create the controller
configuration over a PROFIBUS, it is necessary for us to make input and output
variables available in the block PLC_PRG. We want to start-up the traffic lights
system over an ON switch (DP slave) and we want to send each of the six
(each traffic light red, green, yellow) lamps (DP slave) the corresponding ”signal
command” for each step of the SEQUENCE. We are now declaring appropriate
Boolean variables for these six outputs and one input in the central proecessing
unit (DP master), before we create the programme in the editor, and are
allocating them, at the same time, to the corresponding IEC addresses.

The next step is declare the variables Light1 and Light2 of the type Phases in
the declaration editor.

Figure 3.17: Declaration LIGHT1 and LIGHT2

These deliver the Boolean value of each of the six lights to the above
mentioned six outputs for each step of the block SEQUENCE. We are not,
however, declaring the output variables which are foreseen within the
PLC_PRG block but under Resources for Global Variables instead. The
Boolean input variable IN, which is used to set the variable START in the block

3-12 907 AC 1131/Issued: 10/99We Write a Little Program5

SEQUENCE to TRUE, can be set in the same way. ON is also allocated to an
IEC address.

Select the tab Resources and open the list Global Variables.

Make the declaration as follows:

Figure 3.18: Declaration of the Input-/Output Variables for the PROFIBUS-DP
Configuration

The name of the variable (e.g. IN) is followed, after AT, by a percent sign which
begins the IEC address. I stands for input, Q for output, X for bit, the
subsequent ’1’ in this case references the slot for the PROFIBUS coupler and
the last digit indicates the byte offset (see Chapter ’PLC Configuration’). We will
be handling the controller configuration afterwards but we want, first of all, to
finish off the block PLC_PRG.

For this we go into the editor window and write a program in the language
Structured Text.

We call program SEQUENCE and consign the status of variable IN to the input
variable START.

Then we allocate the color status (variables TRAFFICSIGNAL1 and
TRAFFICSIGNAL2), which is demanded in the currently active step in
SEQUENCE, to the function block TRAFFICSIGNAL (input variable STATUS).
The function block instances LIGHT1 and LIGHT2 give out the correlating color
values for each trafficsignal (LIGHT1.GREEN, LIGHT1.YELLOW, LIGHT1.RED,
correspondingly LIGHT2.GREEN etc.). Those are consigned to the output
variables L1_green, L2_yellow etc.

Your program should finally look like the example shown here.

3-13907 AC 1131/Issued: 10/99 5We Write a Little Program

Figure 3.19: PLC_PRG, Declaration and presentation with the Structured Text

Controller configuration

Before we actually test the program, to see whether and how it runs, and finally,
as our climax, produce a small visualization we first of all want to connect the
traffic lights system over the PROFIBUS-DP to the I/O level.

To achieve this go to the tab Resources and select ”PLC Configuration”. Here
the hardware must be described which the actual project is being created for.
Click with the mouse on the line ”Hardware configuration”. A dotted box appears
within which you can Append a Subelement. Select 'DP-Master' and the dialog
Select a PROFIBUSDP-Master will open. Here you can choose from a
selection list (Device Name) device 07 KT 97. After leaving the dialog with OK
the master will be shown in the configuration tree.

Additionally we need a slave device which will process the input and output data
for our traffic signs. To add a slave to the configuration, select the master in the
configuration tree and choose (again by "Insert" "Append DP-Slave" or by using
the right mouse button) a DP Slave (for example 07 KT 97-DPS) and confirm
with OK. The properties of the slave device and its selection of input/output
modules you can check and adapt in the following way: Select the slave device
in the configuration tree and use the right mouse button or the command
"Extras" "Properties" to get to a dialog titled with the device name. For our
example you can leave the first tab "Standard Parameters" as it is. The second
tab "Input/Output" offers on its left side a list of the devices' input and output
modules. Select one output module with a width of 1 byte by mouse click and
copy it to the configuration list on the right side by pressing >>. Do the same for
a input module (switch).

Close the dialog with OK and see for the new inserted modules in the
configuration tree. Doubleclick on the plus sign at the slave element to open the
sub-modules down to the level of the input and output addresses.

This is the way in which the program gets connected to the IEC addresses
%IX1.0.x and %QX1.0.x, assigned in the Global Variables list.

3-14 907 AC 1131/Issued: 10/99We Write a Little Program5

Figure 3.20: PROFIBUS-DP Controller configuration of the traffic lights system

TRAFFICSIGNAL simulation

Now test your program. For this you must compile it ("Project" "Rebuild all")
login ("Online" "Login" and then load it "Online" "Download"). If you now
select "Online" "Run", the chronological order of the individual steps of your
main program can be followed. The window of the POU PLC_PRG has now
changed to the monitor window. Click twice on the plus sign in the declaration
editor, the variable display drops down, and you can see the values of the
individual variables.

3.2 Visualizing a Traffic Signal Unit

With the visualization of 907 AC 1131 you can quickly and easily bring project
variables to life. You find an complete description of the visualization in Chapter
8. We will now plot two traffic signals and an ON-Switch for our traffic light unit
which will illustrate the switching process.

Creating a new visualization

In order to create a visualization you must first select the range of Visualization
in the Object Organizer. First click on the lower edge of the window on the left
side with the POU on the register card with this symbol and the name
Visualization. If you now choose the command "Project" "Object Add", then
a dialog box opens.

Image 3.21: Dialog Box for Opening a New Visualization

Enter here any name. When you confirm the dialog with OK, then a window
opens in which you can set up your new visualization.

Insert element in Visualization

For our TRAFFICSIGNAL visualization you should proceed as follows:

3-15907 AC 1131/Issued: 10/99 5We Write a Little Program

• Give the command "Insert" "Ellipse" and try to draw a medium sized
circle (∅2cm). For this click in the editor field and draw with pressed left mouse
button the circle in its length.

• Now doubleclick the circle. The dialog box for editing visualization elements
opens

• Choose the category Variables and enter in the field Change color the
variable name .L1_red or choose this variable using the input assistance (button
<F2>). This addresses the variable RED of the function block instance
TRAFFICSIGNAL1 of the POU PLC_PRG.

Image 3.22: Visualization Dialog Box Variables

• Then choose the category Color and click on the button Inside in the area
Color. Choose as neutral a color as possible, such as black.

• Now click on the button within in the area Alarm color and choose the red
which comes closest to that of a red light.

Image 3.23: Visualization Configuration Dialog Box (Color category)

The resulting circle will normally be black, and when the variable RED from
TRAFFICSIGNAL1 is TRUE, then its color will change to red. We have
therefore created the first light of the first TRAFFICSIGNAL!

3-16 907 AC 1131/Issued: 10/99We Write a Little Program5

The other traffic lights

Now enter the commands "Edit" "Copy" (<Ctrl>+<C>) and then twice "Edit"
"Paste" (<Ctrl>+<V>). That gives you two more circles of the exact same size
lying on top of the first one. You can move the circles by clicking on the circle
and dragging it with pressed left mouse button. The desired position should, in
our case, be in a vertical row in the left half of the editor window. Doubleclick on
one of the other two circles in order to open the configuration dialog box again.
Enter in the field Change Color of the corresponding circle the following
variables:

for the middle circle: L1_yellow

for the lowest circle: L1-green

Now choose for the circles in the category Color and in the area Alarm color
the corresponding color (yellow or green).

The TRAFFICSIGNAL case

Now enter the command "Insert" "Rectangle", and insert in the same way as
the circle a rectangle which encloses the three circles. Once again choose as
neutral a color as possible for the rectangle and give the command "Extras"
"Send to back" so that the circles are visible again.

If simulation mode1 is not yet turned on, you can activate it with the command
"Online" "Simulation".

If you now start the simulation with the commands "Online" "Login" and
"Online" "Run", then you can observe the color change of the first traffic
signal.

The second traffic signal

The simplest way to create the second traffic signal is to copy all of the
elements of the first traffic signal. For this you select all elements of the first
traffic signal and copy them (as before with the lights of the first traffic signal)
with the commands "Edit" "Copy" and "Edit" "Paste". You then only have to
change the text "TRAFFICSIGNAL1" in the respective dialog boxes into
"TRAFFICSIGNAL2", and the visualization of the second traffic signal is
completed.

The ON switch

Insert a rectangle and award it, as described above, a colour for a traffic light of
your choice and enter .ON at Variables for the Change color. Enter ”ON” in the
input field for Content in the category Text.

1 The simulation mode is active if a check mark (�) appears in front of the menu item
"Simulation" in the "Online" menu..

3-17907 AC 1131/Issued: 10/99 5We Write a Little Program

Image 3.24: Dialog to configure the visualization elements (Category Text)

In order to set the variable ON to TRUE with a mouse click on the switch, the
variable .ON must be entered into the category Variables. Also select the
Option Variable keying and enter the variable .ON at this point. Variable keying
means that when a mouse click is made on the visualization element the
variable .ON is set to the value TRUE but is reset to the value FALSE when the
mousekey is released again (we have created hereby a simple switch-on device
for our traffic lights program).

Image 3.25: Dialog to configure the visualization elements (Category Input)

Font in the visualization

In order to complete the visualization you should first insert two more rectangles
which you place underneath the traffic signals.

In the visualizations dialog box set white in the category Color for Frame and
write in the category Text in the field Contents "Light1" or "Light2". Now your
visualization looks like this:

3-18 907 AC 1131/Issued: 10/99We Write a Little Program5

Image 3.26: Visualization for the Sample Project Trafficsignal

4-1907 AC 1131/Issued: 10/99 The Individual Components 5

4 The Individual Components

4.1 The Main Window

Image 4.1: The Main Window

The following elements are found in the main window of 907 AC 1131 (from top
to bottom):

• The menu bar
• The Tool bar (optional); with buttons for faster selection of menu

commands.
• The Object Organizer with register cards for POUs, Data types,

Visualizations, and Resources
• A vertical screen divider between the Object Organizer and the Work

space of 907 AC 1131
• The Work space in which the editor windows are located
• The message window (optional)
• The Status bar (optional); with information about the current status of the

project

Menu bar

The menu bar is located at the upper edge of the main window. It contains all
menu commands.

4-2 907 AC 1131/Issued: 10/99The Individual Components5

Image 4.2: Menu Bar

Tool bar

By clicking with the mouse on a symbol you can select a menu command more
quickly. The choice of the available symbols automatically adapts itself to the
active window.

The command is only carried out when the mouse button is pressed on the
symbol and then released.

If you hold the mouse pointer for a short time on a symbol in the tool bar, then
the name of the symbol is shown in a Tooltip.

In order to see a description of each symbol on the tool bar, select in Help the
editor about which you want information and click on the tool bar symbol in
which you are interested.

The display of the tool bar is optional (see "Project" "Options" category
Desktop).

Image 4.3: Tool bar with symbols

Object Organizer

The Object Organizer is always located on the left side of 907 AC 1131 . At the
bottom there are four register cards with symbols for the four types of objects
POUs, Data types, Visualizations and Resources. In order to
change between the respective object types click with the mouse on the
corresponding register card or use the left or right arrow key.

You will learn in chapter Creating and Deleting Objects, etc.how to work with
the objects in the Object Organizer.

Image 4.4: Object Organizer

4-3907 AC 1131/Issued: 10/99 The Individual Components 5

Screen divider

The screen divider is the border between two non-overlapping windows. In
907 AC 1131 there are screen dividers between the Object Organizer and the
Work space of the main window, between the interface (declaration part) and
the implementation (instruction part) of POUs and between the Work space and
the message window.

You can move the screen divider with the mouse pointer. You do this by moving
the mouse with the left mouse button pressed.

Make sure the screen divider always remains at its absolute position, even
when the window size has been changed. If it seems that the screen divider is
no longer present, then simply enlarge your window.

Work space

The Work space is located on the right side of the main window in 907 AC 1131
. All editors for objects and the library manager are opened in this area.

You find the description of the editors in Chapter 5.

Under the menu item "Window" you find all commands for window
management.

Message window

The message window is separated by a screen divider underneath the work
space in the main window.

It contains all messages from the previous compilations, checks , or
comparisons.

If you doubleclick with the mouse in the message window on a message or
press <Enter>, the editor opens with the object. The relevant line of the object is
selected. With the commands "Edit" "Next error" and "Edit" "Previous error"
you can can quickly jump between the error messages.

The display of the message window is optional (see "Window" "Messages").

Status bar

The status bar at the bottom of the window frame of the main window in
907 AC 1131 gives you information about the current project and about menu
commands.

If an item is relevant, then the concept appears on the right side of the status
bar in black script, otherwise in gray script.

When you are working in online mode, the concept Online appears in black
script. If you are working in the offline mode it appears in gray script.

In Online mode you can see from the status bar whether you are in the
simulation (SIM), the program is being processed (RUNS), a breakpoint is set
(BP), or variables are being forced (FORCE).

4-4 907 AC 1131/Issued: 10/99The Individual Components5

With text editor the line and column number of the current cursor position is
indicated (e.g. Line:5, Col.:11). In online mode ’OV’ is indicated black in the
status bar. Pressing the <Ins> key switches between Overwrite and Insert
mode.

If the mouse point is in a visualization, the current X and Y position of the
cursor in pixels relative to the upper left corner of the screen is given. If the
mouse pointer is on an Element, or if an element is being processed, then its
number is indicated. If you have an element to insert, then it also appears (e.g.
Rectangle).

If you have chosen a menu command but haven’t yet confirmed it, then a short
description appears in the status bar.

The display of the statusbar is optional (see "Project" "Options" category
Desktop).

Context Menu

Shortcut: <Shift>+<F10>

Instead of using the menu bar for executing a command, you can use the right
mouse button. The menu which then appears contains the most frequently used
commands for a selected object or for the active editor. The choice of the
available commands adapts itself automatically to the active window. The
choice of the available commands adapts itself automatically to the active
window.

4.2 Options

In 907 AC 1131 you can configure the view of the main window (and have more
than one viewpoint). In addition you can make other settings. For this you have
the command "Project" Options" at your disposal. The settings you make
thereby are, unless determined otherwise, saved in the file "907 AC 1131 .ini"
and restored at the next 907 AC 1131 startup.

"Project" "Options"

With this command the dialog box for setting options is opened. The options are
divided into different categories. Choose the desired category on the left side of
the dialog box by means of a mouse click or using the arrow keys and change
the options on the right side.

You have at your disposal the following categories:

• Load & Save
• User information
• Editor
• Desktop
• Color
• Directories
• Build

4-5907 AC 1131/Issued: 10/99 The Individual Components 5

• Passwords

Load & Save

If you choose this category , then you get the following dialog box:

Image 4.5: Option dialog box of the category Load & Save

When activating an option, a check (�) appears before the option.

If you choose the option Create Backup, then 907 AC 1131 creates a backup
file at every save with the extension ".bak". In this way you can always restore
the versions before the last save.

If you choose the option Auto Save , then while you work your project is
constantly saved to a temporary file with the extension ".asd" according to a set
time interval (Auto Save Interval). This file is erased at a normal exit from the
program. If for any reason 907 AC 1131 is not shut down "normally" (e.g. due
to a power failure), then the file is not erased. When you open the file again the
following message appears:

Image 4.6: There is an auto save backup.

You can now decide whether you want to open the original file or the auto save
file.

If you request the option Ask for project info, then when saving a new project,
or saving a project under a new name, the project info is automatically called.

4-6 907 AC 1131/Issued: 10/99The Individual Components5

You can visualize the project info with the command "Project" "Project info"
and also process it.

If you choose the option Auto Load, then at the next start of 907 AC 1131 the
last open project is automatically loaded. The loading of a project at the start of
907 AC 1131 can also take place by entering the project in the command line.

User information

If you choose this category , then you get the following dialog box:

Image 4.7: Options dialog box of the category User information

To User information belong the Name of the user, his Initials and the
Company for which he works. Each of the entries can be modified.

Editor

If you choose this category , then you get the following dialog box:

Image 4.8: Options dialog box of the category Editor

When activating an option, a check (�) appears before the option.

4-7907 AC 1131/Issued: 10/99 The Individual Components 5

You can make the following settings for the Editors:

• Autodeclaration
• Autoformat
• Declaration as table
• Tab width
• Font
• Display of the text selection
• Display of the Bitvalues

Autodeclaration

If you have chosen the Autodeclaration, then (following the input of a not-yet-
declared variable) a dialog box will appear in all editors with which this variable
can be declared.

Autoformat

If the option Autoformat in the category Editor of the options dialog box has
been chosen, then 907 AC 1131 executes automatic formatting in the IL editor
and in the declaration editor. When you finish with a line, the following
formatting is made:

• Operators written in small letters are shown in capitals;
• Tabs are inserted to that the columns are uniformly divided.

Declarations as tables

If the option Declarations as tables in the Editor category in the Options
dialog box is selected, then you can edit variables in a table instead of using the
usual declaration editor (see chapter ’The Declaration Editor’). This table is
arranged as a card-index box in which there are register cards for input, output,
local, and input/output variables. For each variable you have available the fields
Name, Address, Type, Initial, and Comment.

Tab-Width

In the field Tab-Width in the category Editor of the Options dialog box you can
determine the width of a tab as shown in the editors. The default setting is four
characters, whereby the character width depends upon the font which is
chosen.

Font

By clicking on the button Font in the category Editor of the Options dialog box
you can choose the font in all 907 AC 1131 editors. The font size is the basic
unit for all drawing operations. The choice of a larger font size thus enlarges the
printout, even with each editor of 907 AC 1131 .

After you have entered the command, the font dialog box opens for choosing
the font, style and font size.

4-8 907 AC 1131/Issued: 10/99The Individual Components5

Image 4.9: Dialog box for setting the font

Mark

When choosing Mark in the Editor category in the Options dialog box you can
choose whether the current selection in your graphic editors should be
represented by a dotted rectangle (Dotted), a rectangle with continuous lines
(Line) or by a filled-in rectangle (Filled). In the last case the selection is shown
inverted.

The selection is activated in front of which a (•) point appears.

Bitvalues

When choosing Bitvalues in the category Editor of the Options dialog box you
can choose whether binary data (type BYTE, WORD, DWORD) during
monitoring should be shown Decimal, Hexadecimal, or Binary.

The selection is activated in front of which a (•) point appears.

Options for the Desktop

If you choose this category, then you get the following dialog box:

4-9907 AC 1131/Issued: 10/99 The Individual Components 5

Image 4.10: Options dialog box of the category Desktop

If the option Tool bar has been chosen, then the tool bar with the buttons for
faster selection of menu commands becomes visible underneath the menu bar.

If the option Status bar has been chosen, then the status bar at the lower edge
of the 907 AC 1131 main window becomes visible.

If the option Online in Security mode has been chosen, then in Online mode
with the commands "Run", "Stop", "Reset", "Toggle Breakpoint", "Single
cycle", "Write values", "Force values" and "Release force", a dialog box
appears with the confirmation request whether the command should really be
executed. This option is saved with the project.

In language you can define, in which language the menu and dialog texts are
displayed.

Note: Please note, that the language choice is only possible under
Windows NT !

Colors

If you choose this category, then you get the following dialog box:

4-10 907 AC 1131/Issued: 10/99The Individual Components5

Image 4.11: Options dialog box of the category Color

You can edit the default color setting of 907 AC 1131 . You can choose whether
you want to change the color settings for Line numbers (default setting: light
gray), for Breakpoint positions (dark gray), for a Set breakpoint (light blue),
for the Current position (red), for the Reached Positions (green) or for the
Monitoring of Boolean values (blue).

If you have chosen one of the indicated buttons, the dialog box for the input of
colors opens.

Image 4.12: Dialog box for setting colors

Directories

If you choose this category, then you get the following dialog box:

4-11907 AC 1131/Issued: 10/99 The Individual Components 5

Image 4.13: Options dialog box of the category Directories

In the input fields Libraries and Compilation Files you can indicate directories
from which 907 AC 1131 should extract the libraries or compilation files. If you
activate the button (...) behind a field, then the dialog box for selecting a
directory opens.

Build

If you choose this category, then you get the following dialog box:

Image 4.14: Options dialog box of the category Build

If the option Debugging has been chosen, then the code can significantly
increase in size. Choosing this option makes it possible to generate additional
debugging codes. This is necessary in order to use the 907 AC 1131
debugging functions. If you deactivate this option, then you make possible
faster processing and a smaller code. This option is saved with the project.

If the option Online Changes has been chosen, then your project can be
changed in the Online mode. With this new compilation only the changed POUs
are loaded into the PLC. (See "Project" "Build")

4-12 907 AC 1131/Issued: 10/99The Individual Components5

If the option Save before compile, then your project will be saved every time
before compilation.

With the indication of the Number of data segments you can determine how
much space is reserved in the PLC for the data of your project. If during Build
you get the message: "The global variables need too much memory", then
increase the number of segments in "Project" "Build" ", which increases the
number of the data segments.

These options are saved with the project.

Passwords

If you choose this category, then you get the following dialog box:

Image 4.15: Options dialog box of the category Passwords

To protect your files from unauthorized access 907 AC 1131 offers the option
of using a password to protect against your files being opened or changed.

Enter the desired password in the field Password. For each typed character an
asterisk (*) appears in the field. You must repeat the same word in the field
Confirm Password. Close the dialog box with OK. If you get the message:

"The password does not agree with the confirmation",

then you made a typing error during one of the two entries. In this case repeat
both entries until the dialog box closes without a message.

If you now save the file and then reopen it, then you get a dialog box in which
you are requested to enter the password. The project can then only be opened
if you enter the correct password. Otherwise 907 AC 1131 reports:

"The password is not correct."

Along with the opening of the file, you can also use a password to protect
against the file being changed. For this you must enter a password in the field
Write Protection Password and confirm this entry in the field underneath.

4-13907 AC 1131/Issued: 10/99 The Individual Components 5

A write-protected project can be opened without a password. For this simply
press the button Cancel, if 907 AC 1131 tells you to enter the write-protection
password when opening a file. Now you can compile the project, load it into the
PLC, simulate, etc., but you cannot change it.

Of course it is important that you memorize both passwords. However, if you
should ever forget a password, then contact the manufacturer of your PLC.

The passwords are saved with the project.

In order to create differentiated access rights you can define user groups and
"Passwords for user groups").

‘Sourcedownload’

The following dialog will be opened when you select this category:

Image 4.16: Option dialog for the category Sourcedownload

You can choose to which Timing and what Extent the project is loaded into the
controller system. The option Sourcecode only exclusively involves just the
907 AC 1131 file (file extension .pro). The option All files also includes files
such as the associated library files, visualization bitmaps, configuration files,
etc.

Using the option Implicit at load allows the selected file range to be
automatically loaded into the controller system on the command ‘Online‘
‘Load‘.

Using the option Notice at load offers a dialog, when the command ‘Online‘
‘Load' is given, with the question ”Do you want to write the source code into the
controller system?”. Pressing Yes will automatically load the selected range of
files into the controller system, or you can alternatively finish with No.

When using the option On demand the selected range of files must be
expressly loaded into the controller system by giving the command ‘Online‘
‘Sourcecode download'.

4-14 907 AC 1131/Issued: 10/99The Individual Components5

The project which is stored in the controller system can be retrieved by using
‘File‘ ‘Open' with Open project from PLC. The files will be unpacked in the
process.

See Chapter 4.3, ’File’ ’Open’ for details !

4.3 Managing Projects

The commands which refer to entire project are found under the menu items
"File" and "Project". Some of the commands under "Project" deal with objects
and are therefore described in the chapter Creating and Deleting Objects, etc..

"File" "New"

Symbol:

With this command you create an empty project with the name "Untitled". This
name must be changed when saving.

"File" "Open"

Symbol:

With this command you open an already existing project. If a project has
already been opened and changed, then 907 AC 1131 asks whether this
project should be saved or not.

The dialog box for opening a file appears, and a project file with the extension
"*.pro" or a library file with the extension "*.lib" must be chosen. This file must
already exist. It is not possible to create a project with the command "Open".

To upload a project from the PLC, press PLC at Open project from PLC. If
there is no current connection to the PLC, the dialog Communication
parameters appears to define the transmission parameters. If an online
connection is made, there will be checked whether there are already project
files with equal names in the local PC directories. In this case the dialog Load
project from PLC is opened where you can decide to replace or not to replace
the local files by that used in the PLC.

Note: Please note, that you in any case have to give a new name to a
project, when you load it from the PLC to your local directory, otherwise it is
unnamed.

If there has not yet been loaded a project to the PLC, you get an error message.

(See also ’Project’ ’Options’ category 'Sourcedownload').

4-15907 AC 1131/Issued: 10/99 The Individual Components 5

Image 4.17: Standard dialog box for opening a file in 907 AC 1131

The most recently opened files are listed under the command "File" "Exit". If
you choose one of them, then this project is opened.

If Passwords or User groups have been defined for the project, then a dialog
box appears for entering the password.

"File" "Close"

With this command you close the currently-open project. If the project has been
changed, then 907 AC 1131 asks if these changes are to be saved or not.

If the project to be saved carries the name "Untitled", then a name must be
given to it (see "File" "Save as").

"File" "Save"

Symbol: Shortcut: <Ctrl>+<S>

With this command you save any changes in the project.

If the project to be saved is called "Untitled", then you must give it a name (see
"File" "Save as").

"File" "Save as"

With this command the current project can be saved in another file or as a
library. This does not change the original project file.

After the command has been chosen the Save dialog box appears. Choose
either an existing File name or enter a new file name and choose the desired
file type.

4-16 907 AC 1131/Issued: 10/99The Individual Components5

Image 4.18: Dialog box for Save as

If the project is to be saved under a new name, then choose the file type
907 AC 1131 Project (*.pro).

If you choose the file type Project Version 1.5 (*.pro) or 2.0, then the current
project is saved as if it were created with the version 1.5 or 2.0. Specific data of
the version 2.1 can thereby be lost! However, the project can be executed with
the version 1.5 or 2.0.

You can also save the current project as a library in order to use it in other
projects. Choose the file type Internal library (*.lib) if you have programmed
your POUs in 907 AC 1131 .

Choose the file type External library (*.lib) if you want to implement and
integrate POUs in other languages (e.g. C). This means that another file is also
saved which receives the file name of the library, but with the extension "*.h".
This file is constructed as a C header file with the declarations of all POUs, data
types, and global variables. Is external libraries are used, in the simulation
mode the implementation, written for the POUs in 907 AC 1131 , will be
executed. Working with the real hardware the implementation written in C will
be executed.

Then click OK. The current project is saved in the indicated file. If the new file
name already exists, then you are asked if you want to overwrite this file.

When saving as a library, the entire project is compiled. If an error occurs
thereby, then you are told that a correct project is necessary in order to create a
library. The project is then not saved as a library.

"File" "Print"

Shortcut: <Ctrl>+<P>

With this command the content of the active window is printed.

4-17907 AC 1131/Issued: 10/99 The Individual Components 5

After the command has been chosen, then the Print dialog box appears.
Choose the desired option or configure the printer and then click OK. The active
window is printed.

Image 4.19: Print dialog box

You can determine the number of the copies and print the version to a file.

With the button Properties you open the dialog box to set up the printer.

You can determine the layout of your printout with the command "File" "Printer
Setup".

During printing the dialog box shows you the number of pages already printed.
When you close this dialog box, then the printing stops after the next page.

In order to document your entire project, use the command "Project"
"Document".

If you want to create a document frame for your project, then open a global
variables list and use the command "Extras" "Make Docuframe file".

"File" "Printer setup"

With this command you can determine the layout of the printed pages. The
following dialog box is now opened:

4-18 907 AC 1131/Issued: 10/99The Individual Components5

Image 4.20: Page Layout Dialog Box

In the field File you can enter the name of the file with the extension ".dfr" in
which the page layout should be saved. The default destination for the settings
is the file DEFAULT.DFR.

If you would like to change an existing layout, then browse through the directory
tree to find the desired file with the button Browse

You can also choose whether to begin a new page for each object and for
each subobject. Use the Printer Setup button to open the printer
configuration.

If you click on the Edit button, then the frame for setting up the page layout
appears. Here you can determine the page numbers, date, filename and POU
name, and also place graphics on the page and the text area in which the
documentation should be printed.

Image 4.21: Window for pasting the placeholders on the page layout

4-19907 AC 1131/Issued: 10/99 The Individual Components 5

With the menu item "Insert" "Placeholder" and subsequent selection among
the five placeholders (Page, POU name, File name, Date, and Content), insert
into the layout a so-called placeholder by dragging a rectangle2 on the layout
while pressing the left mouse button. In the printout they are replaced as
follows:

Command Placeholder Effect
Page {Page} Here the current page number appears in

the printout.
POU name {POU Name} Here the current name of the POU

appears.
File name {File Name} Here the name of the project appears.
Date {Date} Here the current date appears.
Contents {Contents} Here the contents of the POU appear.

In addition, with "Insert" "Bitmap" you can insert a bitmap graphic (e.g. a
company logo) in the page. After selecting the graphic, a rectangle should also
be drawn here on the layout using the mouse. Other visualization elements can
be inserted (see chapter ’Visualizations’).

If the template was changed, then 907 AC 1131 asks when the window is
closed if these changes should be saved or not.

"File" "Exit"

Shortcut: <Alt>+<F4>

With this command you exit from 907 AC 1131 .

If a project is opened, then it is closed as described in "File" "Save".

"Project" "Check"

With this command you can check the static correctness of your program. If an
error crops up, then it is announced in the message window, as with the
building of the program.

In contrast to the command "Rebuild all", no code is created

"Project" "Build"

With this command all changed POUs are built. When loading the program, only
the modified POUs are sent to the PLC. The rest of the program remains
unchanged in the PLC.

Note: The command "Build" is only supported if 907 AC 1131 is equipped
with the Online Change function. Otherwise the command "Build" acts like
"Rebuild all".

With larger changes use the function "Project" "Register changes".

2 Drawing a rectangle on the layout by dragging the mouse diagonally while pressing the left
mouse button.

4-20 907 AC 1131/Issued: 10/99The Individual Components5

Online Change function means that parts of a program can be exchanged
(sent to the PLC) without interrupting the PLC. All data is retained as far as
possible.

Warning: If you select "Build" two times in a row without sending
the program to the PLC in the interim, then the error message appears:
"Modifications not compatible with each other".

Follwing this the program must be rebuilt ("Rebuild all") and sent in full to the
PLC!

Online Change

Online Change function means that parts of a program can be exchanged (sent
to the PLC) without interrupting the PLC. All data is retained as far as possible.

"Project" "Rebuild all"

With this command you rebuild all POUs. The message window is opened
which shows the progress of the building process and any errors which may be
be discovered.

A list of all error messages is to be found in the appendix.

Image 4.22: Message window of a project with three POUs and two error messages

With the command "Online" "Login" the command "Rebuild all" is
automatically executed if the project has been modified since the last
compilation.

If the option Save before compile in the Options dialog box in the category
Build has been chosen, then the project is backed up before compilation.

Note: The cross references are created during compilation and are not
saved in the project! In order to use the commands "Show call tree”, "Show

4-21907 AC 1131/Issued: 10/99 The Individual Components 5

cross reference list, and "Show unused variables the project must be rebuilt
after loading and after a modification.

"Project" "Document"

This command lets you print the documentation of your entire project. The
elements of a complete documentation are:

• The POUs,
• the contents of the documentation,
• the data types,
• the visualizations
• the resources (Access variables, global variables, variables configuration,

the Sampling Trace, the PLC Configuration, the Task Configuration, the
Watch and Receipt Manager)

• the call trees of POUs and data types, as well as
• the cross reference list.

For the last two items the project must have been built without errors.

Image 4.23: Dialog box for project documentation

Only those areas in the dialog box are printed which are highlighted in blue.

If you want to select the entire project, then select the name of your project in
the first line.

4-22 907 AC 1131/Issued: 10/99The Individual Components5

If, on the other hand, you only want to select a single object, then click on the
corresponding object or move the dotted rectangle onto the desired object with
the arrow key. Objects which have a plus sign in front of their symbols are
organization objects which contain other objects. With a click on a plus sign
organization object is expanded, and with a click on the resulting minus sign it
can be closed up again. When you select an organization object, then all
relevant objets are also selected. By pressing the <Shift> key you can select a
group of objects, and by pressing the <Ctrl> key you can select several
individual objects.

Once you have made your selection, then click on OK. The Print dialog box
appears. You can determine the layout of the pages to be printed with "File"
"Printer setup".

"Project" "Export"

With 907 AC 1131 projects can be exported or imported. That allows you to
exchange programs between different IEC programming systems.

There is a standardized exchange format for POUs in IL, ST, and SFC (the
Common Elements format of IEC 1131-3). For the POUs in LD and FBD and
the other objects 907 AC 1131 has its own filing format since there is no text
format for this in IEC 1131-3. The selected objects are written to an ASCII file.

POUs, data types, visualizations, and the resources can be exported.

Once you have made your selection in the dialog box window (the same way as
with "Project" "Document"), you can decide, whether you want to export the
selected parts to one file or to export in separate files, one for each object.
Switch on or off the option One file for each object then click on OK. The
dialog box for saving files appears. Enter a file name with the expansion ".exp"
respectively a directory for the object export files, which then will be saved there
with the file name <objectname.exp>.

"Project" "Import"

In the resulting dialog box for opening files select the desired export file.

The data is imported into the current project. If an object with the same name
already exists in the same project, then a dialog box appears with the question
"Do you want to replace it?": If you answer Yes, then the object in the project is
replaced by the object from the import file. If you answer No, then the name of
the new objects receives as a supplement an underline and a digit ("_0", "_1",
..). With Yes, all or No, all this is carried out for all objects.

In the message window the import is registered.

With this command you can compare the open project with another. For
example, if you prepare to save and want to know where you have made
changes in the current project, then you can compare the open project with the
last saved version of it.

4-23907 AC 1131/Issued: 10/99 The Individual Components 5

After you have given this command, then the dialog box for opening files
appears. Choose the project with which you want to compare the current
project. If you press OK, then you will see the result of the comparison in the
message window. All of the objects of the chosen project are listed and the
changes in the object are shown afterward in parentheses. There are five
possible messages:

• "Unchanged": The object was not changed.
• "Deleted": The object is no longer present in the current project.
• "Implementation changed": The instruction part of the POU has been

changed.
• "Interface changed": The declaration part of the object has been changed.
• "Interface and implementation changed": Both the instruction part and the

declaration part of the POU have been changed.

A doubleclick on a message selects the first change in this object.

"Project" "Merge"

With this command you can merge objects (POUs, data types, visualizations,
and resources) from other projects into your project.

When the command has been given, first the standard dialog box for opening
files appears. When you have chosen a file there, a dialog box appears in which
you can choose the desired object. The selection takes place as described with
"Project" "Document" .

If an object with the same name already exists in the project, then the name of
the new object receives the addition of an underline and a digit ("_1", "_2" ...).

"Project" "Project info"

Under this menu item the information about your project can be saved. When
the command has been given, then the following dialog box opens:

4-24 907 AC 1131/Issued: 10/99The Individual Components5

Image 4.24: Dialog box for entering project information

The following project information is displayed:

• File name
• Directory path
• The time of the most recent change (Change date)

This information can not be changed.

In addition, you can can add the following information:

• A Title of the project,
• the name of the Author,
• the Version number, and
• a Description of the project.

This information is optional. When you press the button Statistics you receive
statistical information about the project.

It contains information such as the number of the POUs, data types, and the
local and global variables as they were traced at the last compilation.

4-25907 AC 1131/Issued: 10/99 The Individual Components 5

Image 4.25: Example of project statistics

If you choose the option Ask for project info in the category Load & Save in
the Options dialog box, then while saving a new project, or while saving a
project under a new name, the project info is called automatically.

 "Project" "Global Search"

With this command you can search for the location of a text in POUs, data
types, or in the objects of the global variables.

When the command is entered, a dialog box opens in which you can choose the
desired object. The selection is made as in the "Project" "Document"
description.

When you have confirmed the selection with OK, then the search dialog box
appears. If a text in an object has been found, then the object is loaded into the
appropriate editor, and its location is shown.

"Project" "Global replace"

With this command you can search for the location of a text in POUs, data
types, or the objects of the global variables and replace this text by another.
This is executed in the same way as with "Project" "Global Search" or "Edit"
"Replace".

"Project" "Register changes"

This command is necessary when significant changes have to be made to a
project without interrupting the PLC. (Online Change).

Copy your project, make your changes, and test your changes. Select the
command "Project" "Compare" in order to compare the two projects. With the
command "Register changes" all differences between the current project and
the comparison are traced. Then, with the command "Build" the modified

4-26 907 AC 1131/Issued: 10/99The Individual Components5

POUs can be compiled. When downloading the program only the modified
POUs are sent to the PLC. The rest of the program remains unchanged in the
PLC.

User groups

In 907 AC 1131 up to eight user groups with different access rights to the
POUs, data types, visualizations, and resources can be set up. Access rights
for single objects or all of them can be established. Only a member of a certain
user group can open a project. A member of such a user group must identify
himself by means of a password.

The user groups are numbered from 0 to 7, whereby the Group 0 has the
administrator rights, i.e. only members of group 0 may determine passwords
and access rights for all groups and/or objects.

When a new project is launched, then all passwords are initially empty. Until a
password has been set for the 0 group, one enters the project automatically as
a member of the 0 group.

If a password for the user group 0 is existing while the project is loaded, then a
password will be demanded for all groups when the project is opened. For this
the following dialog box appears:

Image 4.26: Dialog box for password entry

In the combobox User group on the left side of the dialog box, enter the group
to which you belong and enter on the right side the relevant password. Press
OK. If the password does not agree with the saved password, then the
message appears:

"The password is not correct."

Only when you have entered the correct password can the project be opened.

With the command "Passwords for user group" you can assign the
passwords, and with "Object" "Access rights" you can define the rights for
single objects or for all of them.

"Project" "Passwords for user
groups"

With this command you open the dialog box for password assignment for user
groups. This command can only be executed by members of group 0. When the
command has been given, then the following dialog box appears:

4-27907 AC 1131/Issued: 10/99 The Individual Components 5

Image 4.27: Dialog box for password assignment

In the left combobox User group you can select the group. Enter the desired
password for the group in the field Password. For each typed character an
asterisk (*) appears in the field. You must repeat the same password in the field
Confirm password. Close the dialog box after each password entry with OK. If
you get the message:

"The password does not agree with the confirmation",

then you made a typing error during one of the two entries. In this case repeat
both entries until the dialog box closes without a message.

Then, if necessary, assign a password for the next group by calling the
command again.

With the command "Object" "Access rights" you can assign the rights for
single objects or all of them.

4.4 Creating and Deleting Objects, etc.

Now we shall explain how to work with objects and what help is available to
keep track of a project (Folders, Call tree, Cross reference list,..).

Object

POUs, data types, visualizations and the resources (Access variables, global
variables, the variable configuration, the Sampling Trace, the PLC
Configuration, the Task Configuration, and the Watch and Receipt Manager are
all defined as "objects". The folders inserted for structuring the project are
partially involved. All objects of a project are in the Object Organizer.

If you hold the mouse pointer for a short time on a POU in the Object Organizer,
then the type of the POU (Program, Function or Function block) is shown in a
Tooltip. For the global variables the tooltip shows the keyword (VAR_ACCESS,
VAR_GLOBAL, VAR_CONFIG).

Folder

In order to keep track of larger projects you should group your POUs, data
types, visualizations, and global variables systematically in folders.

You can set up as many levels of folders as you want. If a plus sign is in front of
a closed folder symbol, then this folder contains objects and/or additional

4-28 907 AC 1131/Issued: 10/99The Individual Components5

folders. With a click on the plus sign the folder is opened and the subordinated
objects appear. With a click on the minus (which has replaced the plus sign) the
folder can be closed again. In the context menu you find the commands
"Expand nodes" and "Collapse nodes" with the same functions.

With Drag&Drop you can move the objects as well as the folders within their
object type. For this select the object and drag it with pressed left mouse button
to the desired position.

Note: Folders have no influence on the program, but rather serve only to
structure your project clearly.

Image 4.28: Example of folders in the Object Organizer

"New Folder"

With this command a new folder is inserted as a structural object. If a folder has
been selected, then the new one is created underneath it. Otherwise it is
created on the same level.

The context menu of the Object Organizer which contains this command
appears when an object or the object type has been selected and you have
pressed the right mouse button or <Shift>+<F10>.

"Expand nodes" "Collapse
nodes"

With the command expand the objects are visibly unfolded which are located in
the selected object. With Collapse the subordinated objects are no longer
shown.

With folders you can open or close them with a double mouse click or by
pressing <Enter>.

The context menu of the Object Organizer which contains this command
appears when an object or the object type has been selected and you have
pressed the right mouse button or <Shift>+<F10>.

"Project" "Object Delete"

Shortcut: <Delete>

4-29907 AC 1131/Issued: 10/99 The Individual Components 5

With this command the currently selected object (a POU, a data type, a
visualization, or global variables), or a folder with the subordinated objects is
removed from the Object Organizer and is thus deleted from the project.

For safety you are asked once more for confirmation.

If the editor window of the object was open, then it is automatically closed.

If you delete with the command "Edit" "Cut", then the object is parked on the
clipboard.

"Project" "Object Add"

Shortcut: <Insert>

With this command you create a new object. The type of the object (POU, data
type, visualization, or global variables) depends upon the selected register card
in the Object Organizer. Enter the name of the new object in the dialog box
which appears. Remember that the name of the object may not have already
been used.

If you are dealing with a POU, then you must also choose the type of the POU
(Program, Function, or Function block) and the language in which it is to be
programmed.

After confirmation of the entry, then the suitable entry window for the object
appears.

Image 4.29: Dialog box for creating a new POU

If, on the other hand, you use the command "Edit" "Paste", then the object is
pasted from the clipboard, and no dialog box appears.

 "Project" "Object Rename"

Shortcut: <Spacebar>

With this command you give a new name to the currently-selected object or
folder. Remember that the name of the object may not have already been used.

If the editing window of the object is open, then its title is changed automatically
when the name is changed.

Image 4.30: Dialog box for renaming a POU

4-30 907 AC 1131/Issued: 10/99The Individual Components5

"Project" "Object Convert"

This command can only be used with POUs. You can convert POUs from the
languages SFC, ST, FBD, LD, and IL into one of the three languages IL, FBD,
and LD.

For this the project must be compiled. Choose the language into which you
want to convert and give the POU a new name. Remember that the name of the
POU may not have already been used. Then press OK, and the new POU is
added to your POU list.

Image 4.31: Dialog box for converting a POU

"Project" "Object Copy"

With this command a selected object is copied and saved under a new name.
Enter the name of the new object in the resulting dialog box. Remember that the
name of the object may not have already been used.

If, on the other hand, you used the command "Edit" "Copy", then the object is
parked on the clipboard, and no dialog box appears.

Image 4.32: Dialog box for copying a POU

 "Project" "Object Open"

Shortcut: <Enter>

With the command you load a selected object within the Object Organizer into
the respective editor. If a window with this object is already open, then it gets a
focus, is moved into the foreground and can now be edited.

There are two other ways of opening an object:

• Doubleclick with the mouse on the desired object
• type in the Object Organizer the first letter of the object name. Then a

dialog box opens in which all objects of the available object types with this
initial letter are shown. Select the desired object and click on the button

4-31907 AC 1131/Issued: 10/99 The Individual Components 5

Open in order to load the object in its edit window. This option is
supported with the object type Resources only for global variables.

This last possibility is especially useful in projects with many objects.

Image 4.33: Dialog box for choosing the object to be opened

"Project" "Object Access rights"

With this command you open the dialog box for assigning access rights to the
different user groups. The following dialog box appears:

Image 4.34: Dialog box for assigning access rights

Members of the user group 0 can now assign individual access rights for each
user group. There are three possible settings:

• No Access: the object may not be opened by a member of the user
group.

• Read Access: the object can be opened for reading by a member of the
user group but not changed.

• Full Access: the object may be opened and changed by a member of the
user group.

4-32 907 AC 1131/Issued: 10/99The Individual Components5

The settings refer either to the currently-selected object in the Object Organizer
or, if the option Apply to all is chosen, to all POUs, data types, visualizations,
and resources of the project.

The assignment to a user group takes place when opening the project through a
password request if a password was assigned to the user group 0.

‘Project’ ‘Add Action’

This command is used to generate an action allocated to a selected block in the
Object Organiser. One selects the name of the action in the dialog which
appears and also the language in which the action should be implemented.

The new action is placed under your block in the Object Organiser. A plus sign
appears in front of the block. A simple mouse click on the plus sign causes the
action objects to appear and a minus sign appears in front of the block.
Renewed clicking on the minus sign causes the actions to disappear and the
plus sign appears again. This can also be achieved over the context menu
commands ‘Expand Node’ and ‘Collapse Node’.

"Project" "View instance"

With this command you can open and show single instances of function blocks.
The function block whose instance should be open must first be selected in the
Object Organizer before you can execute this command. In the resulting dialog
box you can choose the desired instance of this function block.

Note: Instances can be opened only after logging in! (Project was correctly
compiled and sent with "Online" "Login" to the PLC).

Image 4.35: Dialog box for opening an instance

"Project" "Show call tree"

With this command you open a window which shows the call tree of the object
chosen in the Object Organizer. For this the project must be compiled (see

4-33907 AC 1131/Issued: 10/99 The Individual Components 5

"Rebuild all"). The call tree contains both calls for POUs and references to
data types.

Image 4.36: Example of a call tree

"Project" "Show cross reference
list"

With this command you open a dialog box which makes possible the output of
all application points for a variable, address, or a POU. For this the project must
be compiled (see "Rebuild all").

Choose first the category Variable, Address, or POU and then enter the name
of the desired element. By clicking on the button Get References you get the
list of all application points. Along with the POU and the line or network number,
it is shown whether this point has read only access or full access, whether it is a
local or global variable and whether the variable is connected to an address.

When you select a line of the cross reference list and press the button Go To or
doubleclick on the line, then the POU is shown in its editor at the corresponding
point. In this way you can jump to all application points without a time-
consuming search.

In order to make processing easier, you can use the Send to message
window button to bring the current cross reference list into the message
window and from there change to the respective POU.

4-34 907 AC 1131/Issued: 10/99The Individual Components5

Image 4.37: Dialog box and example of a cross reference list

 "Project" "Show unused
variables"

With this command a list of variables is shown which, to be sure, have been
declared in the project but are not being used anywhere. For this the project
must be compiled (see "Rebuild all").

If there are no unused variables in your project, then that is announced.
Otherwise the following window appears:

Image 4.38: Unused variables of a project

4-35907 AC 1131/Issued: 10/99 The Individual Components 5

If you select a variable and press the button Go To or doubleclick on the
variable, then you change to the respective object in which the variable has
been declared.

"Extras"
Previous version

With this command you can restore the current object to the last saved state.
The restored state is either that of the most recent manual save ("File" "Save")
or that which was kept after the automatic save, depending upon which version
is most recent.

4.5 General Editing Functions

You can use the following commands in all editors and some of them in the
Object Organizer. All of the commands are locted under the menu item "Edit".

"Edit" "Undo"

Shortcut: <Ctrl>+<Z>

This command undoes the action which was most recently executed in the
currently-open editor window or in the Object Organizer.

By repeatedly selecting this command, all actions can be undone back to the
point at which the window was opened. This applies to all actions in the editors
for POUs, data types, visualizations, and global variables and in the Object
Organizer.

With "Edit" "Redo" you can restore an action which you have undone.

Note: The commands "Undo" and "Redo" apply to the current window.
Each window carries its own action list. If you want to undo actions in several
windows, then you must activate the corresponding window. When undoing or
redoing in the Object Organizer the focus must lie here.

"Edit" "Redo"

Shortcut: <Ctrl>+<Y>

With the command in the currently-open editor window or in the Object
Organizer you can restore an action you have undone ("Edit" "Undo").

As often as you have previously executed the command "Undo" , you can also
carry out the command "Redo".

Note: The commands "Undo" and "Redo" apply to the current window.
Each window carries its own action list. If you want to undo actions in several

4-36 907 AC 1131/Issued: 10/99The Individual Components5

windows, then you must activate the corresponding window. When undoing or
redoing in the Object Manager must lie there.

"Edit" "Cut"

Symbol:

Shortcut: <Ctrl>+<X> or <Shift>+<Delete>

This command transfers the current selection from the editor to the clipboard.
The selection is removed from the editor.

In the Object Organizer this similarly applies to the selected object, whereby not
all objects can be deleted, e.g. the PLC Configuration.

Remember that not all editors support the cut command, and that its use can be
limited in some editors.

The form of the selection depends upon the respective editor:

In the text editors (IL, ST, and declarations) the selection is a list of characters.

In the FBD and LD editors the choice is a number of networks which are
indicated by a dotted rectangle in the network number field or a box with all
preceding lines, boxes, and operands.

In the SFC editor the selection is a part of a series of steps surrounded by a
dotted rectangle.

In order to paste the content of the clipboard you use the command "Edit"
"Paste". In the SFC editor you can also use the commands "Extras" "Insert
parallel branch (right)" or "Extras" "Paste after".

In order to copy a selection onto the clipboard without deleting it, use the
command "Edit" "Copy".

In order to remove a selected area without changing the clipboard, use the
command "Edit" "Delete".

"Edit" "Copy"

Symbol: Shortcut: <Ctrl>+<C>

This command copies the current selection from the editor to the clipboard. This
does not change the contents of the editor window.

With the Object Organizer this similarly applies to the selected object, whereby
not all objects can be copied, e.g. the PLC Configuration.

Remember that not all editors support copying and that it can be limited with
some editors.

For the type of selection the same rules apply as with "Edit" "Cut".

4-37907 AC 1131/Issued: 10/99 The Individual Components 5

In the text editors (IL, ST, and declarations) the selection is a list of characters.

In the FBD and LD editors the choice is a number of networks which are
indicated by a dotted rectangle in the network number field or a box with all
preceding lines, boxes, and operands.

In the SFC editor you can also use the commands "Extras" "Insert parallel
branch (right)" or "Extras" "Paste after".

"Edit" "Paste"

Symbol: Shortcut: <Ctrl>+<V>

Pastes the content of the clipboard onto the current position in the editor
window. In the graphic editors the command can only be executed when a
correct structure results from the insertion.

With the Object Organizer the object is pasted from the clipboard.

Remember that pasting is not supported by all editors and that its use can be
limited in some editors.

The current position can be defined differently according to the type of editor:

With the text editors (IL, ST, Declarations) the current position is that of the
blinking cursor (a vertical line) which you place by clicking with the mouse).

In the FBD and LD editors the current position is the first network with a dotted
rectangle in the network number area. The contents of the clipboard are
inserted in front of this network. If a partial structure has been copied, then it is
inserted in front of the selected element.

In the SFC editor the current position is determined the selection which is
surrounded by a dotted rectangle. Depending upon the selection and the
contents of the clipboard, these contents are inserted either in front of the
selection or into a new branch (parallel or alternative) to the left of the selection.

In SFC the commands "Extras" "Insert parallel branch (right)" or "Extras"
"Paste after" can be used in order to insert the contents of the clipboard.

"Edit" "Delete"

Shortcut: <Delete>

Deletes the selected area from the editor window. This does not change the
contents of the clipboard.

In the Object Organizer this applies likewise to the selected object, whereby not
all objects can be deleted, e.g. the PLC Configuration.

For the type of selection the same rules apply as with "Edit" "Cut".

In the library manager the selection is the currently selected library name.

4-38 907 AC 1131/Issued: 10/99The Individual Components5

"Edit" "Find"

Symbol:

With this command you search for a certain text passage in the current editor
window. The Find dialog box opens. It remains opens until the button Cancel is
pressed.

In the field Find what you can enter the series of characters you are looking for.

In addition, you can decide whether the text you are looking for Match whole
word only or not, or also whether Match case is to be considered, and whether
the search should proceed Up or Down starting from the current cursor
position.

The button Find next starts the search which begins at the selected position
and continues in the chosen search direction. If the text passages is found, then
it is highlighted. If the passage is not found, then a message announces this.
The search can be repeated several times in succession until the beginning or
the end of the contents of the editor window has been reached.

Remember that the found text can be covered up by the Find dialog box.

Image 4.39: Find dialog box

 "Edit" "Find next"

Symbol: Shortcut: <F3>

With this command you execute a search with the same parameters as with the
most recent action "Edit" "Find".

"Edit" "Replace"

With this command you search for a certain passage just as with the command
"Edit" "Find", and replace it with another. After you have chosen the command
the dialog box for find and replace appears. This dialog box remains open until
the button Cancel or Close is pressed.

The button Replace replaces the current selection with the text in the field
Replace with.

The button Replace all replaces every occurrence of the text in the field Find
next after the current position with the text in the field Replace with. At the end
of the procedure a message announces how many replacements were made.

4-39907 AC 1131/Issued: 10/99 The Individual Components 5

Image 4.40: Dialog box for find and replace

 "Edit" "Input Assistant"

Shortcut: <F2>

This command provides a dialog box for choosing possible inputs at the current
cursor position in the editor window. In the left column choose the desired input
category, select the desired entry in the right column, and confirm your choice
with OK. This inserts your choice at this position.

The categories offered depend upon the current cursor position in the editor
window, i.e. upon that which can be entered at this point (e.g. variables,
operators, POUs, conversions, ...).

Image 4.41: Input Assistant Dialog Box

In some positions (e.g. in the watch list) multilevel variable names are
necessary. At first the Input Assistant dialog box contains a list of all POUs
along with a single point for the global variables. After each POU name there is
a point. Doubleclicking with the mouse or pressing <Enter> opens a list of the
variables for a selected POU. Instances and data types can, when appropriate,
be opened again. By pressing OK you accept the selected variable.

4-40 907 AC 1131/Issued: 10/99The Individual Components5

Image 4.42: Input Assistant dialog box with multilevel variable names

Note: Some entries (e.g. global variables) are only brought up to date in the
Input Assistant after a compilation run.

‘Edit’’Declare Variable’

Kurzform: <Shift>+<F2>

This command opens the dialog for the declaration of a variable. This dialog
also opens automatically when the option ’Project’ ’Options’ ’Editor’
’Autodeclaration’ is switched on and when a new undefined variable is used the
declaration editor.

"Edit" "Next error"

Shortcut: <F4>

After the incorrect compilation of a project this command can show the next
error. The corresponding editor window is activated and the incorrect place is
selected. At the same time in the message window the corresponding error
message is shown.

"Edit" "Previous error"

Shortcut: <Shift>+<F4>

After the incorrect compilation of a project this command shows the previous
error. The corresponding editor window is activated and the incorrect place is
selected. At the same time in the message window the corresponding error
message is shown.

4-41907 AC 1131/Issued: 10/99 The Individual Components 5

4.6 General Online Functions

The available online commands are assembled under the menu item "Online".
The execution of some of the commands depends upon the active editor.

The online commands become available only after logging in.

"Online" "Login"

Symbol: Kurzform: <Alt>+<F8>

This command combines the programming system with the PLC (or starts the
simulation program) and changes into the online mode.

If the current project has not been compiled since opening or since the last
modification, then it is compiled now (as with "Project" "Rebuild all"). If errors
occur during compilation, then 907 AC 1131 does not change into Online
mode.

After a successful login all online functions are available (if the corresponding
settings in "Options" category Build have been entered). The current values are
monitored for all visible variable declarations.

Use the "Online" "Logout" command to change from online back to offline
mode.

If the system reports

Error:

"A connection to the PLC could not be established"

Verify whether the parameters selected in the "Online" "Communication
Parameters" agree with those of your PLC.

You should especially verify that the interface number is correct. (If you have
set it to COM1, the cable should also be physically plugged into COM1.)
Furthermore, verify that the baud rates in the PLC and the Program System
agree with each other. (Default setting in 907 AC 1131 : 9600 Bd).

Error:

"The program has been modified! Should the new program be loaded?"

The project which is open in the editor is incompatible with the program
currently found in the PLC (or with the Simulation Mode program being run).
Monitoring and debugging is therefore not possible. You can either choose
"No," logout, and open the right project, or use "Yes" to load the current project
in the PLC.

"Online" "Logout"

Symbol: Kurzform <Strg>+<F8>

The connection to the PLC is broken, or, the Simulation Mode program is ended
and is shifted to the offline mode.

4-42 907 AC 1131/Issued: 10/99The Individual Components5

Use the "Online" "Login" command to change to the online mode.

"Online" "Download"

This command loads the compiled project in the PLC.

If you use C-Code generation, then prior to the download, the C-Compiler is
called up, which creates the download file. If this is not the case, then the
download file is created during the compiling.

"Online" "Run"

Symbol: Shortcut: <F5>

This command starts the program in the PLC or in Simulation Mode.

This command can be executed immediately after the "Online" "Download"
command, or after the user program in the PLC has been ended with the
"Online" "Stop" command, or when the user program is at a break point, or
when a Single Cycle has been performed.

"Online" "Stop"

Symbol: Kurzform <Umschalt>+<F8>

Stops the execution of the program in the PLC or in Simulation Mode between
two cycles.

Use the "Online" "Run" command to restart the program.

"Online" "Reset"

If you have initialized the variables with a specific value, then this command will
reset the variables to the initialized value. All other variables are set at a
standard initialization (for example, integers at 0). As a precautionary measure,
907 AC 1131 asks you to confirm your decision before all of the variables are
overwritten.

Use the "Online" "Run" command to restart the program.

"Online" "Toggle Breakpoint"

Symbol: Shortcut: <F9>

This command sets a breakpoint in the present position in the active window. If
a breakpoint has already been set in the present position, that breakpoint will be
removed.

The position at which a breakpoint can be set depends on the language in
which the POU in the active window is written.

In the Text Editors (IL, ST), the breakpoint is set at the line where the cursor is
located, if this line is a breakpoint position (recognizable by the dark-gray color

4-43907 AC 1131/Issued: 10/99 The Individual Components 5

of the line number field). You can also click on the line number field to set or
remove a breakpoint in the text editors.

In FBD and LD, the breakpoint is set at the currently selected network. In order
to set or remove a breakpoint in the FBD or LD Editor, you can also click on the
network number field.

In SFC, the breakpoint is set at the currently selected step. In SFC you can also
use <Shift> with a doubleclick to set or remove a breakpoint.

If a breakpoint has been set, then the line number field or the network number
field or the step will be displayed with a light-blue background color.

If a breakpoint is reached while the program is running, the program will stop,
and the corresponding field will be displayed in a red background color. In order
to continue the program, use the "Online" "Run", "Online" "Step in", or
"Online" "Step Over" commands.

Online "Breakpoint Dialog Box"

This command opens a dialog box to edit breakpoints throughout the entire
project. The dialog box also displays all breakpoints presently set.

In order to set a breakpoint, choose a POU in the POU combobox and the line
or the network in the Location combobox where you would like to set the
breakpoint; then press the Add button. The breakpoint will be added to the list.

In order to delete a breakpoint, highlight the breakpoint to be deleted from the
list of the set breakpoints and press the Delete button.

The Delete All button can be used to delete all the breakpoints.

In order to go to the location in the editor where a certain breakpoint was set,
highlight the respective breakpoint from the list of set breakpoints and press the
Go to button.

Image 4.43: Breakpoint Editing Dialog Box

4-44 907 AC 1131/Issued: 10/99The Individual Components5

"Online" "Step over"

Symbol: Shortcut: <F10>

This command causes a single step to execute. If a POU is called, the program
stops after its execution. In SFC a complete action is executed.

If the present instruction is the call-up of a function or of a function block, then
the function or function block will be executed completely. Use the "Online"
"Step In" command, in order to move to the first instruction of a called function
or function block.

If the last instruction has been reached, then the program will go on to the next
instruction in the POU.

"Online" "Step in"

Shortcut: <F8>

A single step is executed. The program is stopped before the first instruction of
a called POU.

If necessary, there will be a changeover to an open POU.

If the present position is a call-up of a function or of a function block, then the
command will proceed on to the first instruction in the called POU.

In all other situations, the command will function exactly as "Online" "Step
Over".

"Online" "Single Cycle"

Shortcut: <Ctrl>+<F5>

This command executes a single PLC Cycle and stops after this cycle.

This command can be repeated continuously in order to proceed in single
cycles.

The Single Cycle ends when the "Online" "Run" command is executed.

"Online" "Write Values" or
"Force Values"

Shortcut: <Ctrl>+<F7> (Write values)

Shortcut: <F7> (Force values)

In order to change the value of a variable containing a single element, you must
first use the mouse to doubleclick on the line in which the variable is declared,
or alternatively you can use <Enter>. Next you can enter the new value of the
variable in the dialog box that pops up. In the case of Boolean variables, the
value is toggled without the dialog box appearing. The new value is displayed in
red.

4-45907 AC 1131/Issued: 10/99 The Individual Components 5

Image 4.44: Dialog Box for Writing a New Variable Value.

The new value is not yet written in the PLC.

Several variables can be set to specific values and afterwards written all at once
(cycle consistently) in the PLC.

With "Write Values", the values are written just once and can immediately be
written over again.

With "Force Values", the values continue to be written after each cycle until
this procedure is stopped with "Release Force".

"Online" "Release Force"

Shortcut: <Shift>+<F7>

This command ends the forcing of variables in the PLC. All forced variables
once again change their values normally.

If no forced values are available, the command will have no effect.

"Online""Show Call Stack"

You can run this command when the Simulation Mode stops at a breakpoint.
You will be given a dialog box with a list of the POUs currently in the Call Stack.

Image 4.45: Example of a Call Stack

The first POU is always PLC_PRG, because this is where the executing begins.

The last POU is always the POU being executed.

4-46 907 AC 1131/Issued: 10/99The Individual Components5

After you have selected a POU and have pressed the Go to button, the
selected POU is loaded in its editor, and it will display the line or network being
processed.

"Online" "Flow Control"

If you have selected the flow control, then a check(�) will appear in front of the
menu item. Following this, every line or every network will be marked which was
executed in the last PLC Cycle.

The line number field or the network number field of the lines or networks which
just run will be displayed in green. An additional field is added in the IL-Editor in
which the present contents of the accumulator are displayed. In the graphic
editors for the Function Block Diagram and Ladder Diagram, an additional field
will be inserted in all connecting lines not transporting any Boolean values.
When these Out- and Inputs are verified, then the value that is transported over
the connecting line will be shown in this field. Connecting lines that transport
only Boolean values will be shaded blue when they transport TRUE. This
enables constant monitoring of the information flow.

"Online" "Simulation"

If Simulation Mode is chosen, then a check(�) will appear in front of the menu
item.

In the simulation mode, the user program runs on the same PC under Windows.
This mode is used to test the project. The communication between the PC and
Simulation Mode uses the Windows Message mechanism.

If the program is not in simulation mode, then the program will run on the PLC.
The communication between the PC and the PLC typically runs over the serial
interface.

The status of this flag is stored with the project.

"Online" "Communication
Parameters"

The parameters for transferring through the serial interface can be entered in a
dialog box. It is important that these parameters agree with those entered in the
PLC .

4-47907 AC 1131/Issued: 10/99 The Individual Components 5

Image 4.46: Dialog box for Entering Communication Parameters

Possible adjustments include: the Baudrate; whether the transfer should be
made with Even, Uneven, or No Parity; the number of Stop Bits; and also the
interface (COM1, COM2, etc.) via which the transfer is to occur. The selected
parameters are stored with the project.

‘Online’ ’Communications
Parameters’ for the use of
Gateway

You are offered a special dialog for setting communications parameters when
the communication between the local PC and the run-time system is running
over a gateway server in your system.

Let us examine the principle of the gateway system before explaining the
operation of the dialog:

A gateway server can be used to allow your local PC to communicate with one
or more run-time systems. The setting concerning which run-time systems can
be addressed, which is specifically configured for each gateway server, and the
connection to the desired gateway server, is made on the local PC. Here it is
possible that both the gateway server and the run-time system(s) can run
together on the local PC. If we are dealing with a gateway server which is
running on another PC we must ensure that it has been started there. If you are
selecting a locally installed gateway server, it automatically starts when you log
onto the target run-time system. You can recognise this through the appearance
of a 907 AC 1131 symbol on the bottom right in the task bar. This symbol lights
up as long as you are connected to the run-time system over the gateway. The
menu points Info and Finish are obtained by clicking with the right mousekey
on the symbol. Finish is used to switch off the gateway.

See the following scheme for presenting a gateway system:

4-48 907 AC 1131/Issued: 10/99The Individual Components5

Image 4.47: Example of a Gateway server system

PC_local is your local PC, PC_x is another PC, which gateway addresses.
PC_gateway is the PC on which the gateway server is installed, PC_PLC1
through to PC_PLC4 are PCs on which the run-time systems are running. The
diagram shows the modules as separated but it is fully possible for the Gateway
server and / or run-time systems to be installed together on the local PC.

Important: Please note that a connection to gateway is only
possible over TCP/IP so make sure that your PC is configured appropriately!

The connections from gateway to the various run-time computers can, on the
other hand, run over different protocols (TCP/IP, Pipe, etc.).

Let us now return to the communications parameters dialog on the local PC: It
shows the current situation on the selected gateway server, which can be called
up at any time using the button Update.

The dialog will appear as follows if the communications parameters have
already been configured according to the example shown above:

4-49907 AC 1131/Issued: 10/99 The Individual Components 5

Image 4.48: Dialog for setting the gateway communications parameters, example

The heading Channels lists two categories of connections:

On the one hand all of the connections are shown which are installed on the
currently connected gateway server called ’localhost’. Here the address or the
name of this gateway is located on the upper position behind the minus sign,
which in our example is running on the local computer. The appropriate address
’localhost’ corresponds in the normal case to the IP address 127.0.0.1 of the
local computer (PC_local). Below, indented to the right, are three addresses of
run-time computers which the gateway channels are set-up to (PC_PLC1 to 3).
They could have been configured both from the local PC or from the other PCs
(PC_x) which are or were connected to the gateway server.

The second category of the channels describes includes all connections to the
gateway which can be set up from your local PC, over this configuration dialog
for example. They create the ”branch” which leads from the minus sign directly
below to PC_PLC1 and PC_PLC4. These channel addresses do not
necessarily have to be known yet at the gateway. For PC_PLC4 in the example
described above, the configuration parameters are stored locally in the project
but they will first be known to the gateway the next time log-in to the run-time
system occurs. This has already occurred for PC_PLC1 since the associated
gateway address has appeared as an additional ”sub-branch” to the ”channel
tree”.

In the central part of the dialog one finds the designation, in each case, of the
left selected channel and the associated parameter under Name, Value and
Comment.

Let us now turn to the way the communications parameters themselves can be
set in dialog:

To define the connection to the desired gateway we open the dialog
Communication Parameters Gateway by pressing the button Gateway.

Image 4.49: Example dialog, definition of the local connection to the gateway

Here it is possible to enter or edit the name of the computer on which the
gateway server is running as well as its Dataport and Serviceport. By first
activation 'localhost' is offered by default as the name of the computer. You can
also enter an IP address instead of the computer name. The name 'localhost' is
usually identical to the local IP address 127.0.0.1 in most cases but you may
have to enter this directly into the field Address. Suitable values for the selected
Gateway are usually already present in the fields Dataport and Serviceport.

4-50 907 AC 1131/Issued: 10/99The Individual Components5

By ending the dialog with OK the appropriate input appears in the title
Channels of the dialog Communications Parameters, in the upper position. A
sign in brackets showing ”not connected” appears behind the address when it is
not possible to establish a connection to the selected gateway address, either
because it is not running or because the address is incorrect.

Press the button New if you wish to install a new channel on the gateway
server. You are offered the following dialog.

Image 4.50: Example dialog, installing a new channel

The input field Name always contains the name used for the last inputted
channel. The current gateway name e.g. ‘localhost_’ appears if a connection
has not been entered yet. You can edit the channel name at this point. The
channel name is purely informative, it does not have to be a unique name but it
is recommended to use one. Select a driver which is offered in the column
Name with a mouse click (the offering depends on your individual installation
conditions) and the commentary to it may possibly be shown in the column Info
if one exists.

If you now close the dialog with OK, the newly defined channel appears in the
communications parameter dialog as a further entry for Channels at the lowest
position under the minus sign. It is only stored locally in the project at first (see
above). It is still possible to edit the column Value while it is in this condition
(see tips below); confirm the parameters with OK and to leave the dialog.

To make the newly established connection known in the gateway, and thus to
make it generally available, it necessary for you to log-on into the run-time
system. When you open the communications parameter dialog again the new
channel, apart from being in its former position, also appears indented under
the address/name of the gateway computer. If a communications error occurs
when logging in, the interface cannot be opened (e.g. COM1 for a serial
connection) possibly because it is used by another device.

The parameters for a channel already known by the gateway server can no
longer be edited in the configuration dialog. The parameter fields appear grey.
You can, however, delete the connection as long as it is not active.

4-51907 AC 1131/Issued: 10/99 The Individual Components 5

Important: Please not that the deletion of a channel is not
reversible. It occurs at the moment that you press on the button Remove!

Tips for editing the parameters in the communications parameters dialog:

You can only edit the text fields in the column Value.

Select a text field with the mouse, and get into the editing mode by double
clicking or by pressing the space bar. The text input is finished by pressing the
<Enter> key.

You can use <Tabulator> or <Shift> + <Tabulator> to jump to the next or the
previous switching or editing possibility.

To edit numerical values it is possible with the arrow keys or the Page Up/Down
keys to change the value by one or ten units respectively. A double click with
the mouse also changes the value by increasing by one unit. A typing check is
installed for numerical values: <Ctrl> + <Home> or <Ctrl> + <End> deliver the
lowest or the highest value respectively for the possible input values for the type
of parameter in question.

‘Online’ ‘Sourcecode download’

This command loads the source code for the project into the controller system.
See also ‘Project’ ‘Options’ ‘Sourcedownload’.

4.7 Window set up

Under the "Window" menu item you will find all commands for managing the
windows. There are commands both for the automatic set up of your window as
well as for opening the library manager and for changing between open
windows. At the end of the menu you will find a list of all open windows in the
sequence they were opened. You can switch to the desired window by clicking
the mouse on the relevant entry. A check will appear in front of the active
window.

"Window" "Tile Horizontal"

With this command you can arrange all the windows horizontally in the work
area so that they do not overlap and will fill the entire work area.

"Window" "Tile Vertical"

With this command you can arrange all the windows vertically in the work area
so that they do not overlap and will fill the entire work area.

"Window" "Cascade"

With this command you can arrange all the windows in the work area in a
cascading fashion, one behind another.

4-52 907 AC 1131/Issued: 10/99The Individual Components5

"Window" "Arrange Symbols"

With this command you can arrange all of the minimized windows in the work
area in a row at the lower end of the work area.

"Window" "Close All"

With this command you can close all open windows in the work area.

"Window" "Messages"

Shortcut: <Shift>+<Esc>

With this command you can open or close the message window with the
messages from the last compiling, checking, or comparing procedure.

If the messages window is open, then a check (�) will appear in front of the
command.

4.8 Help when you need it

Should you encounter any problems with 907 AC 1131 during your work, online
help is available to help to solve them. There you will find all the information that
is also contained in this handbook.

"Help" "Contents and Index"

With this command you can open the help topics window.

Under the Contents register card you will find the contents. The books can be
opened and closed using a doubleclick or the corresponding button.
Doubleclicking or activating the Show button on a highlighted topic will display
the topic in the main window of help or in the index window.

Click on the Index register card to look for a specific word, and click on the
Search register card to select a full-text search. Follow the instructions in the
register cards.

4-53907 AC 1131/Issued: 10/99 The Individual Components 5

Image 4.51: Help Topics Window

Main Help Window

In the main help window topics are displayed with index entries listed below
them.

The following buttons available:

• Help topics opens the help topics window
• Back shows the help entry that was previously displayed
• Print opens the dialog box for printing
• << shows the help entry that comes prior in sequence to the present entry
• >> shows the help entry that is next in sequence

In addition you can use the following menu commands:

• With "File" ’’Print Topics’ you can print out the present help entry.
• If you use the "Edit" "Copy" command, the selected text will be copied

into the clipboard. From here you can insert the text into other applications
and use it there.

• If you use the "Edit" "Annotate" command, a dialog box will be opened.
There is an editing field on the left side of the dialog box in which you can
enter an annotation to the help page.
On the right side there are buttons for storing the text, for canceling the
program, for deleting the notation, for copying a highlighted text on the
clipboard , and for pasting a text from the clipboard.
If you have made an annotation to a help entry, a small green paper clip
will appear in the upper left-hand corner. By clicking the mouse on the

4-54 907 AC 1131/Issued: 10/99The Individual Components5

paper clip, you can open the dialog box with the annotation that has been
made.

• If you would like to mark a page from help, then you can set a bookmark.
To do so, choose the "Define" "Bookmark" command. A dialog box will
appear in which you can enter a new name (The name of the page can
serve as a starter) or can delete an old bookmark. If bookmarks were
defined, then these will be displayed in the "Bookmark" menu. By
choosing these menu items, you can access the desired page.

• Under "Options", you can define whether the help window always
appears in the foreground or in the background or in the standard setting.

• With "Display previous topics" under "Options", you are furnished with
a selection window with the previously displayed help topics. Doubleclick
the entry you wish to view.

• Under "Options", you can select the desired "Font" in small, normal, or
large.

• If "Options" "Use System Color" has been chosen, help will not be
displayed in the colors that were set, but in the system colors instead.

Image 4.52: Main Help Window

Index Window

The index window contains explanations about the menu commands, terms, or
sequences.

The index window will always remain on the surface by default, unless the help
option is placed in the background in the main window of help.

The following buttons are available:

• Help topics opens the help topics window
• Back shows the help entry that was previously displayed
• Print opens the dialog box for printing
• << shows the help entry directly prior to the present entry
• >> shows the help entry that is next in sequence

4-55907 AC 1131/Issued: 10/99 The Individual Components 5

Image 4.53: Index Window

Context Sensitive Help

Shortcut: <F1>

You can use the <F1> key in an active window, in a dialog box, or above a
menu command. When you perform a command from the menu, the help for the
command called up at that time is displayed.

You can also highlight a text (for example, a key word or a standard function)
and have the help displayed for that item..

4-56 907 AC 1131/Issued: 10/99The Individual Components5

5-1907 AC 1131/Issued: 10/99 Editors in 907 AC 1131 5

5 Editors in 907 AC 1131

5.1 The Declaration Editor

Declaration editors are used to declare variables of POUs (Program
Organization Units) and global variables, for data type declarations, and in the
Watch and Receipt Manager.

The declaration of variables is supported by syntax coloring.

All editors for POUs (Program Organization Units) consist of a declaration part
and a body. These are separated by a screen divider that can be dragged, as
required, by clicking it with the mouse and moving it up or down.

The most important commands are found in the context menu (right mouse
button or <Ctrl>+<F10>).

Declaration Part

All variables to be used only in this POU are declared in the declaration part of
the POU. These can include: input variables, output variables, input/output
variables, local variables, retain variables, and constants. The declaration
syntax is based on the IEC1131-3 standard. An example of a correct
declaration of variables in 907 AC 1131 -Editor:

Image 5.1: Declaration Editor

Input Variable

Between the key words VAR_INPUT and END_VAR, all variables are declared
that serve as input variables for a POU. That means that at the call position, the
value of the variables can be given along with a call.

5-2 907 AC 1131/Issued: 10/99The Editors in 907 AC 11315

Example:

VAR_INPUT
in1:INT (* 1. Inputvariable*)

END_VAR

Output Variable

Between the key words VAR_OUTPUT and END_VAR, all variables are
declared that serve as output variables of a POU. That means that these values
are carried back to the POU making the call. There they can be answered and
used further.

Example:

VAR_OUTPUT
out1:INT; (* 1. Outputvariable*)

END_VAR

Input and Output Variables

Between the key words VAR_IN_OUT and END_VAR, all variables are
declared that serve as input and output variables for a POU.

Attention: With this variable, the value of the transferred variable is changed
("transferred as a pointer"). That means that the input value for such variables
cannot be a constant.

Example:

VAR_IN_OUT
inout1:INT; (* 1. Inputoutputvariable *)

END_VAR

Local Variables

Between the keywords VAR and END_VAR, all of the local variables of a POU
are declared. These have no external connection; in other words, they can not
be manipulated from the outside.

Example:

VAR
loc1:INT; (* 1. Local Variable*)

END_VAR

Retain Variables

Retain variables are identified by the key word RETAIN. These variables
maintain their value, even after a power failure. When the program is run again,
the stored values will be processed further. A practical example would be an
operations timer that recommences timing after a power failure.

All other variables are newly initialized, either with their initialized values or with
the standard initializations.

5-3907 AC 1131/Issued: 10/99 Editors in 907 AC 1131 5

Example:

VAR RETAIN
rem1:INT; (* 1. Retain variable*)

END_VAR

Constants

Constants are identified by the key word CONSTANT. They can be declared
locally or globally.

Syntax:

VAR CONSTANT
<Identifier>:<Type> := <initialization>;

END_VAR

Example:

VAR CONSTANT
con1:INT:=12; (* 1. Constant*)

END_VAR

You will find a listing of possible constants here in the appendix.

Keywords

In all editors, all keywords are written in capital letters. Keywords may not be
used as variables.

Variables declaration

A variables declaration has the following syntax:

<Identifier> {AT <Address>}:<Type> {:=<initialization>};

The parts in the braces {} are optional.

The variable identifier may not contain any blank spaces or special characters,
may not be declared more than once and cannot be the same as any of the
keywords. Capitalization is not recognized which means that VAR1, Var1, and
var1 are all the same variable. The underscore character is recognized in
identifiers (e.g., "A_BCD" and "AB_CD" are considered two different identifiers).
An identifier may not have more than one underscore character in a row. The
first 32 characters are significant.

All declarations of variables and data type elements can include initialization.
They are brought about by the ":=" operator. For variables of elementary types,
these initializations are constants. The default-initialization is 0 for all
declarations.

Example:

var1:INT:=12; (* Integer variable with initial value of 12*)

If you wish to link a variable directly to a definite address, then you must declare
the variable with the keyword AT.

5-4 907 AC 1131/Issued: 10/99The Editors in 907 AC 11315

For faster input of the declarations, use the shortcut mode.

In function blocks you can also specify variables with incomplete address
statements. In order for such a variable to be used in a local instance, there
must be an entry for it in the variable configuration.

Pay attention to the possibility of an automatic declaration

AT Declaration

If you wish to link a variable directly to a definite address, then you must declare
the variable with the keyword AT. The advantage of such a procedure is that
you can assign a meaningful name to an address, and that any necessary
changes of an incoming or outgoing signal will only have to be made in one
place (e.g., in the declaration).

Notice that variables requiring an input cannot be accessed by writing. A further
restriction is that AT declarations can only be made for local and global
variables, and not for input- and output variables from POUs.

Examples:

counter_heat7 AT %QX0.0: BOOL;
lightcabinetimpulse AT %IX7.2: BOOL;
download AT %MX2.2: BOOL;

"Insert" "Declarations
keywords"

You can use this command to open a list of all the keywords that can be used in
the declaration part of a POU. After a keyword has been chosen and the choice
has been confirmed, the word will be inserted at the present cursor position.

You also receive the list, when you open the Input Assistant and choose the
Declarations category.

"Insert" "Type"

With this command you will receive a selection of the possible types for a
declaration of variables. You also receive the list when you access the Input
Assistant.

The types are divided into these categories:

• Standard types BOOL, BYTE, etc.
• Defined types Structures, enumeration types, etc.
• Standard function blocks for instance declarations
• Defined function blocks for instance declarations

907 AC 1131 supports all standard types of IEC1131-3:

Examples for the use of the various types are found in the appendix.

5-5907 AC 1131/Issued: 10/99 Editors in 907 AC 1131 5

Syntax Coloring

In all editors you receive visual support in the implementation and declaration of
variables. Errors are avoided, or discovered more quickly, because the text is
displayed in color.

A comment left unclosed, thus annotating instructions, will be noticed
immediately; keywords will not be accidentally misspelled, etc.

The following color highlighting will be used:

• Blue Keywords
• Green Comments in the text editors
• Pink Special constants (e.g. TRUE/FALSE, T#3s,

%IX0.0)
• Red Input error (for example, invalid time constant,

keyword, written in lower case,...)
• Black Variables, constants, assignment operators, ...

Shortcut Mode

The declaration editor for 907 AC 1131 allows you to use the shortcut mode.
This mode is activated when you end a line with <Ctrl><Enter>

The following shortcuts are supported:

• All identifiers up to the last identifier of a line will become declaration
variable identifiers

• The type of declaration is determined by the last identifier of the line. In
this context, the following will apply:
B or BOOL gives the result BOOL
I or INT gives the result INT
R or REAL gives the result REAL
S or string gives the result STRING

• If no type has been established through these rules, then the type is
BOOL and the last identifier will not be used as a type (Example 1.).

• Every constant, depending on the type of declaration, will turn into an
initialization or a string (Examples 2. and 3.).

• An address (as in %MD12) is extended around the AT... attribute(Example
4.).

• A text after a semicolon (;) becomes a comment (Example 4.).
• All other characters in the line are ignored (e.g., the exclamation point in

Example 5.).

Examples:

Shortcut Declaration
A A: BOOL;
A B I 2 A, B: INT := 2;
ST S 2; A string ST:STRING(2); (* A string *)
X %MD12 R 5 Real Number X AT %MD12: REAL := 5.0;(* Real Number

*)
B ! B: BOOL;

5-6 907 AC 1131/Issued: 10/99The Editors in 907 AC 11315

Autodeclaration

If the Autodeclaration of the Options dialog box , then a dialog box will appear
in all editors after the input of a variable that has not yet been declared. With the
help of this dialog box, the variable can now be declared.

Image 5.2: Dialog Box for Declaration of Variables

With the help of the Class combobox, select whether you are dealing with a
local variable (VAR), input variable((VAR_INPUT), output variable
(VAR_OUTPUT), input/output variable (VAR_INOUT), or a global variable
(VAR_GLOBAL).

With the CONSTANT and RETAIN options, you can define whether you are
dealing with a constant or a retain variable

The variable name you entered in the editor has been entered in the Name
field, BOOL has been placed in the Type field. The ... button opens the Input
Assistent dialog which allows you to select from all possible types.

In the Initial Value field you can assign a value to the variable; otherwise the
standard initial value will be used.

In the Address field you can link a variable to the address (AT declaration)

If necessary, insert a Comment.

By pressing OK you will enter the variable in the corresponding declaration
editor.

Note: The dialog box for variable declaration you also get by the command
’Edit’ ’Declare Variable’.

Line Numbers in the
Declaration Editor

In offline mode, a simple click on a special line number will mark the entire text
line.

In the online mode, a single click on a specific line number will open up or close
the variable in this line, in case a structural variable is involved.

5-7907 AC 1131/Issued: 10/99 Editors in 907 AC 1131 5

Declarations as tables

If the Declarations as tables option is set in the Options dialog box in the
Editor category, the declaration editor looks like a table. As in a card-index box,
you can select the register cards of the respective variable types and edit the
variables.

For each variable you are given the following entry fields.

Name: Input the identifier of the variable.
Address: If necessary, input the address of the variable (AT

declaration)
Type: Input the type of the variable. (Input the function

block when instantiating a function block)
Initial: Enter a possible initialization of the variable

(corresponding to the ":= " assignment operator).
Comment: Enter a comment here.

Both of the display types of the declaration editor can be changed without
causing any problems. In the online mode, there are no differences for the
display.

Image 5.3: Declaration Editor as a Table

"Insert" "New Declaration"

With this command you bring a new variable into the declaration table of the
declaration editor. If the present cursor position is located in an field of the table,
then the new variable will be pasted in the preceding line; otherwise, the new
variable is pasted at the end of the table. Moreover, you can paste a new
declaration at the end of the table by using the right arrow key or the tab key in
the last field of the table.

You will receive a variable that has "Name" located in the Name field, and
"Bool" located in the Type field, as its default setting. You should change these
values to the desired values. Name and type are all that is necessary for a
complete declaration of variables.

Declaration Editors in Online
Mode

In online mode , the declaration editor changes into a monitor window. In each
line there is a variable followed by the equal sign (=) and the value of the

5-8 907 AC 1131/Issued: 10/99The Editors in 907 AC 11315

variable. If the variable at this point is undefined, three question marks (???) will
appear.

In front of every multi-element variable there is a plus sign. By pressing <Enter>
or after doubleclicking on such a variable, the variable is opened up. In the
example, the traffic signal structure would be opened up.

When a variable is open, all of its components are listed after it. A minus sign
appears in front of the variable. If you doubleclick again or press <Enter>, the
variable will be closed, and the plus sign will reappear.

Pressing <Enter> or doubleclicking on a single-element variable will open the
dialog box to write a variable. Here it is possible to change the present value of
the variable. In the case of Boolean variables, no dialog box appears; these
variables are toggled.

The new value will turn red and will remain unchanged. If the "Online" "Write
values" command is given, then all variables are placed in the selected list and
are once again displayed in black.

If the "Online" "Force values" command is given, then all variables will be set
to the selected values, until the "Release force" command is given.

Comment

User comments must be enclosed in the special character string "*" and "*".

Comments are allowed in all text editors at any preferred location. These
include all declarations, the IL and ST languages, and user-defined data types.

In FBD and LD comments can be entered into every network. In order to do so,
select the network that you wish to comment, and enable "Insert" "Comment".

In SFC you can enter comments for the step in the dialog box for editing step
attributes.

Interlocking comments are not allowed.

In Online mode, if you place the mouse pointer briefly above a variable, then the
type and, if necessary, address and comments about the variable will be
displayed in a Tooltip.

5.2 The Text Editors

The text editors (the Instruction List editor and the editor for) of 907 AC 1131
offer the usual capabilities of Windows text editors.

5-9907 AC 1131/Issued: 10/99 Editors in 907 AC 1131 5

The implementation in the text editors is supported by syntax coloring.

In Overwrite mode the status bar shows a black OV. You can switch between
Overwrite mode and Insert mode by key <Ins>

Image 5.4: Text Editors for the Instruction List and Structured Text

The most important commands are found in the context menu (right mouse
button or <Ctrl>+<F10>).

The text editors use the following menu commands in special ways:

"Insert" "Operator"

With this command all of the operators available in the current language are
displayed in a dialog box.

If one of the operators is selected and the list is closed with OK, then the
highlighted operator will be inserted at the present cursor position.

"Insert" "Operand"

With this command all variables in a dialog box are displayed. You can select
whether you would like to display a list of the global, the local, or the system
variables.

If one of the operands is chosen, and the dialog box is closed with OK, then the
highlighted operand will be inserted at the present cursor position.

5-10 907 AC 1131/Issued: 10/99The Editors in 907 AC 11315

"Insert" "Function"

With this command all functions will be displayed in a dialog box. You can
choose whether to have a list displaying user-defined or standard functions.

If one of the functions is selected and the dialog box is closed with OK, then the
highlighted function will be inserted at the current cursor position.

If the With arguments option was selected in the dialog box, then the
necessary input and output variables will also be inserted.

"Insert" "Function Block"

With this command all function blocks are displayed in a dialog box. You can
choose whether to have a list displaying user-defined or standard function
blocks.

If one of the function blocks is selected and the dialog box is closed with OK,
then the highlighted function block will be inserted at the current cursor position.

If the With arguments option was selected in the dialog box, then the
necessary input variables of the function block will also be inserted.

The text editors in Online mode

The online functions in the editors are set breakpoint and single step processing
(steps). Together with the monitoring, the user thus has the debugging
capability of a modern Windows standard language debugger.

In Online mode, the text editor window is vertically divided in halves. On the left
side of the window you will then find the normal program text; on the right side
you will see a display of the variables whose values were changed in the
respective lines.

The display is the same as in the declaration part. That means that when the
PLC is running, the present values of the respective variables will be displayed.

If you place the mouse pointer briefly above a variable, then the type, the
address and the comment about the variable will be displayed in a Tooltip.

"Extras" "Monitoring Options"

With this command you can configure your monitoring window. In the text
editors, the window is divided into two halves during monitoring. The program is
located in the left half. In the right half, all variables that are located in the
corresponding program line are monitored.

You can specify the Monitor Window Width and which Distance two variables
should have in a line. An distance declaration of 1 corresponds, in this case, to
a line height in the selected font.

5-11907 AC 1131/Issued: 10/99 Editors in 907 AC 1131 5

Image 5.5: Monitoring Options Dialog Box

Breakpoint Positions

Since in 907 AC 1131 several IL lines are internally combined into a single C-
code line, breakpoints can not be set in every line. Breakpoint positions include
all positions in a program at which values of variables can change or where the
program flow branches off. (Exception: function calls. If necessary, a breakpoint
in the function must be set here.) At the positions lying inbetween, a breakpoint
would not even make sense, since nothing has been able to change in the data
since the preceding breakpoint position.

This results in the following breakpoint positions in the IL:

• At the start of the POU
• At every LD, LDN (or, in case a LD is located at a label, then at the label)
• At every JMP, JMPC, JMPCN
• At every label
• At every CAL, CALC, CALCN
• At every RET, RETC, RETCN
• At the end of the POU

Structured Text accommodates the following breakpoint positions:

• At every assignment
• At every RETURN and EXIT instruction
• in lines where conditions are being evaluated (WHILE, IF, REPEAT)
• At the end of the POU

Breakpoint positions are marked by the display of the line number field in a
darker gray.

Image 5.6: IL Editor with Possible Breakpoint Positions (darker number fields)

5-12 907 AC 1131/Issued: 10/99The Editors in 907 AC 11315

How do you set a breakpoint?

In order to set a breakpoint, click the line number field of the line where you
want to set a breakpoint. If the selected field is a breakpoint position, then the
color of the line numbers field will change from dark gray to light blue, and the
breakpoint will be activated in the PLC.

Deleting Breakpoints

Correspondingly, in order to delete a breakpoint, click on the line number field of
the line with the breakpoint to be deleted.

Setting and deleting of breakpoints can also be selected via the menu
("Online" "Toggle Breakpoint"), via the function key <F9>, or via the symbol
in the tool bar.

What happens at a breakpoint?

If a breakpoint is reached in the PLC, then the screen will display the break with
the corresponding line. The line number field of the line where the PLC is
positioned will appear in red. The user program is stopped in the PLC.

If the program is at a breakpoint, then the processing can be resumed with
"Online" "Run".

In addition, with "Online" "Step over" or "Step in" you can cause the program
to run to the next breakpoint position. If the instruction where you are located is
a CAL command, or, if there is a function call in the lines up to the next
breakpoint position, then you can use "Step over" to bypass the function call.
With "Step in", you will branch to the open POU.

Line Number of the Text Editor

The line numbers of the text editor give the number of each text line of an
implementation of a POU.

In Off-line mode, a simple click on a special line number will mark the entire
text line.

In Online mode, the background color of the line number indicates the
breakpoint status of every line:

• dark gray: This line is a possible position for a breakpoint.
• light blue: a breakpoint has been set in this line.
• red: The program has reached this point.

In Online mode, simply clicking the mouse will change the breakpoint status of
this line.

5-13907 AC 1131/Issued: 10/99 Editors in 907 AC 1131 5

5.2.1 The Instruction List Editor

This is how a POU written in the IL looks under the corresponding 907 AC 1131
editor:

Image 5.7: IL Editor

All editors for POUs consist of a declaration part and a body. These are
separated by a screen divider.

The Instruction List editor is a text editor with the usual capabilities of Windows
text editors. The most important commands are found in the context menu (right
mouse button or <Ctrl>+<F10>).

For information about the IL editor in Online mode, see Text Editors in Online
Mode.

For information about the language, see the Instruction Lists.

Flow Control

With the "Online" "Flow control" command, an additional field in which the
accumulator contents is displayed is inserted in the IL editor on the left side of
every line.

5.2.2 The Editor for Structured Text

5-14 907 AC 1131/Issued: 10/99The Editors in 907 AC 11315

This is how a POU written in ST appears under the corresponding 907 AC 1131
editor:

Image 5.8: Editor for Structured Text

All editors for POUs consist of a declaration part and a body. These are
separated by a screen divider.

The editor for Structured Text is a text editor with the usual capabilities of
Windows text editors. The most important commands are found in the context
menu (right mouse button or <Ctrl>+<F10>).

For information about the ST editor in Online mode, read Text Editors in Online
Mode.

For information about the language, read the chapter Structured Text(ST).

5.3 The Graphic Editors

The editors of both of the graphically oriented languages, LD and FBD, have
many points in common. These points are summarized in the following
chapters. The editor of the Sequential Function Chart digresses from this point
and is, consequently, not described until Chapter The Sequential Function
Chart Editor.

5-15907 AC 1131/Issued: 10/99 Editors in 907 AC 1131 5

The implementation in the graphic editors is supported by syntax coloring.

Label

Each network has a label that can optionally be left empty. This label is edited
by clicking the first line of the network, directly next to the network number. Now
you can enter a label, followed by a colon.

Network Comments

Every network can be supplied with a multi-lined comment. In "Extras"
"Options", you can enter the maximum number of lines to be made available
for a network comment. This entry is made in the maximum comment size
field. (The default value here is 4.) You can also enter the number of lines that
generally should be reserved for comments (minimum comment size). If, for
example, the number 2 is entered, then, at the start of each network there will
be two empty lines after the label line. The default value here is 0, which has
the advantage of allowing more networks to fit in the screen area.

If the minimal comment size is greater than 0, then in order to enter a comment
you simply click in the comment line and then enter the comment. Otherwise
you must next select the network to which a comment is to be entered, and use
"Insert" "Comment" to insert a comment line. In contrast to the program text,
comments are displayed in gray.

"Insert" "Network (after)" or
"Insert" "Network (before)"

Shortcut: <Shift>+<T> (Network after)

In order to insert a new network in the FBD or the LD editor, select the "Insert"
"Network (after)" or the “Insert" "Network (before)" command, depending on
whether you want to insert the new network before or after the present network.
The present network can be changed by clicking the network number. You will
recognize it in the dotted rectangle under the number. With the <Shift key> and
a mouse click you can select from the entire area of networks, from the present
one to the one clicked.

The network editors in the
online mode

In the FBD and the LD editors you can only set breakpoints for networks. The
network number field of a network for which a breakpoint has been set, is
displayed in blue. The processing then stops in front of the network, where the
breakpoint is located. In this case, the network number field is displayed in red.
With single step processing (steps), you can jump from network to network.

All values are monitored upon entering and exiting network POUs (Program
Organization Units).

The flow control is run with the "Online" "Flow control" command. Using the
flow control, you can view the present values that are being carried in the
networks over the connecting lines. If the connecting lines do not carry Boolean
values, then the value will be displayed in a specially inserted field. If the lines

5-16 907 AC 1131/Issued: 10/99The Editors in 907 AC 11315

carry Boolean values, then they will be shaded blue, in the event that they carry
TRUE. Therefore, you can accompany the flow of information while the PLC is
running.

If you place the mouse pointer briefly above a variable, then the type, the
address and the comment about the variable will be displayed in a Tooltip.

5.3.1 The Function Block Diagram Editor

This is how a POU written in the FBD under the corresponding 907 AC 1131
editor looks:

Image 5.9: Editor for the Function Block Diagram

The Function Block Diagram editor is a graphic editor. It works with a list of
networks, in which every network contains a structure that displays,
respectively, a logical or an arithmetical expression, the calling up of a function
block, a jump, or a return instruction.

The most important commands are found in the context menu (right mouse
button or <Ctrl>+<F10>).

Cursor positions in FBD

Every text is a possible cursor position. The selected text is on a blue
background and can now be changed.

5-17907 AC 1131/Issued: 10/99 Editors in 907 AC 1131 5

You can also recognize the present cursor position by a dotted rectangle. The
following is a list of all possible cursor positions with an example:

1) Every text field (possible cursor positions framed in black):

2) Every input:

3) Every operator, function, or function block:

4) Outputs, if an assignment or a jump comes afterward:

5) The lined cross above an assignment, a jump, or a return instruction:

6) Behind the outermost object on the right of every network ("last cursor
position," the same cursor position that was used to select a network):

7) The lined cross directly in front of an assignment:

How to set the cursor

The cursor can be set at a certain position by clicking the mouse, or with the
help of the keyboard.

Using the arrow keys, you can jump to the nearest cursor position in the
selected direction at any time. All cursor positions, including the text fields, can
be accessed this way. If the last cursor position is selected, then the <up> or

5-18 907 AC 1131/Issued: 10/99The Editors in 907 AC 11315

<down> arrow keys can be used to select the last cursor position of the
previous or subsequent network.

An empty network contains only three question marks "???". By clicking behind
these, the last cursor position is selected.

"Insert" "Assignment"

Symbol: Shortcut: <Ctrl>+<A>

This command inserts an assignment.

Depending on the selected position, insertion takes place directly in front of the
selected input (Cursor Position 2), directly after the selected output (Cursor
Position 4), directly before the selected line cross (Cursor Position 5), or at the
end of the network (Cursor Position 6). For an inserted assignment, a selection
can be made accompanying the entered text "???", and the assignment can be
replaced by the variable that is to be assigned. For this you can also use the
Input Assistant.

In order to insert an additional assignment to an existing assignment, use the
"Insert" "Output" command.

"Insert" "Jump"

Symbol: Shortcut: <Ctrl>+<L>

This command inserts a jump.

Depending on the selected position, insertion takes place directly in front of the
selected input (Cursor Position 2), directly after the selected output (Cursor
Position 4), directly before the selected line cross (Cursor Position 5), or at the
end of the network (Cursor Position 6).

For an inserted jump, a selection can be made accompanying the entered text
"???", and the jump can be replaced by the label to which it is to be assigned.

"Insert" "Return"

Symbol: Shortcut: <Ctrl>+<R>

This command inserts a RETURN instruction.

Depending on the selected position, insertion takes place directly in front of the
selected input (Cursor Position 2),directly after the selected output (Cursor
Position 4), directly before the selected line cross (Cursor Position 5), or at the
end of the network (Cursor Position 6)

"Insert" "Operator"

Symbol: Shortcut: <Ctrl>+<O>

5-19907 AC 1131/Issued: 10/99 Editors in 907 AC 1131 5

This command inserts an operator. Insertion takes place according to the
selected position.

If an input is selected (Cursor Position 2), then the operator is inserted in front
of this input. The first input of this operator is linked to the branch on the left of
the selected input. The output of the new operator is linked to the selected
input.

If an output is selected (Cursor Position 4), then the operator is inserted after
this output. The first input of the operator is connected with the selected output.
The output of the new operator is linked to the branch with which the selected
output was linked.

If an operator, a function, or a function block is selected (Cursor Position 3),
then the old element will be replaced by the new operator. As far as possible,
the branches will be connected the same way as they were before the
replacement. If the old element had more inputs than the new one, then the
unattachable branches will be deleted. The same holds true for the outputs.

If a jump or a return is selected, then the operator will be inserted before this
jump or return. The first input of the operator is connected with the branch to the
left of the selected element. The output of the operator is linked to the branch to
the right of the selected element.

If the last cursor position of a network is selected (Cursor Position 6), then the
operator will be inserted following the last element. The first input of the
operator is linked to the branch to the left of the selected position.

The inserted operator is always an AND. By selecting and overwriting the text,
you can convert this operator into any other operator. With the Input Assistant,
you can choose the desired operator from the list of the supported operators. If
the new operator has a different lowest number of inputs, then these will be
attached. If the new operator has a lesser highest number of inputs, then the
last inputs, including those on the branches situated in front of them will be
deleted.

All operator inputs that could not be linked will receive the text "???". This text
must be clicked and changed into the desired constant or variable.

"Insert" "Function" or "Insert"
"Function Block"

Symbol: Shortcut: <Ctrl>+<F (Function)

Symbol: Shortcut: <Ctrl>+ (Function block)

This command inserts a function or a function block. Insertion takes place
according to the selected position. First the Input Assistant dialog box, which
contains all functions and function blocks, is opened.

The insertion then takes place analogous to the "Insert" "Operator" command.
The assignment of inputs and outputs is also analogous. If there is a branch to

5-20 907 AC 1131/Issued: 10/99The Editors in 907 AC 11315

the right of an inserted function block, then the branch will be assigned to the
first output. Otherwise the outputs will remain unallocated.

"Insert" "Input"

Symbol: Shortcut: <Ctrl>+<U>

This command inserts an operator input. With many operators, the number of
inputs may vary. (For example, ADD can have 2 or more inputs.)

In order to extend such an operator by an input, you need to select the input in
front of which you wish to insert an additional input (Cursor Position 1); or you
must select the operator itself (Cursor Position 3), if a lowest input is to be
inserted.

The inserted input is allocated with the text "???". This text must be clicked and
changed into the desired constant or variable. For this you can also use the
Input Assistant.

"Insert" "Output"

Symbol:

This command inserts an additional assignment into an existing assignment.
This capability serves the placement of so-called assignment combs; i.e., the
assignment of the value presently located at the line to several variables.

If you select the lined cross above an assignment (Cursor Position 5) or the
output directly in front of it (Cursor Position 4), then there will be another
assignment inserted after the ones already there.

If the line cross directly in front of an assignment is selected (Cursor Position 4),
then another assignment will be inserted in front of this one.

The inserted output is allocated with the text "???". This text must be clicked
and changed into the desired variable. For this you can also use the Input
Assistant.

"Extras" "Negation"

Symbol: Shortcut: <Ctrl>+<N>

With this command you can negate the inputs, outputs, jumps, or RETURN
instructions. The symbol for the negation is a small circle at a connection.

If an input is selected (Cursor Position 2), then this input will be negated.

If an output is selected (Cursor Position 4), then this output will be negated.

If a jump or a return is marked, then the input of this jump or return will be
negated.

A negation can be canceled through renewed negation.

5-21907 AC 1131/Issued: 10/99 Editors in 907 AC 1131 5

"Extras" "Set/Reset"

Symbol:

With this command you can define outputs as Set or Reset Outputs. A grid with
Set Output is displayed with [S], and a grid with Reset Output is displayed with
[R].

Image 5.10: Set/Reset Outputs in FBD

An Output Set is set to TRUE, if the grid belonging to it returns TRUE. The
output now maintains this value, even if the grid jumps back to FALSE.

An Output Reset is set to FALSE, if the grid belonging to it returns FALSE. The
output maintains its value, even if the grid jumps back to FALSE.

With multiple executions of the command, the output will alternate between set,
reset, and normal output.

"Extras" "Zoom"

Shortcut: <Alt>+<Enter>

With this command a selected POU is loaded into its editor (Cursor Position 3).

If you are dealing with a POU from a library, then the library manager is called
up, and the corresponding POU is displayed.

Cutting, Copying, Pasting, and
Deleting in FBD

The commands used to "Cut", "Copy", "Paste", and "Delete" are found under
the "Edit" menu item.

If a line cross is selected (Cursor Position 5), then the assignments, jumps, or
RETURNS located below the crossed line will be cut, deleted, or copied.

If an operator, a function, or a function block is selected (Cursor Position 3),
then the selected object itself, will be cut, deleted, or copied, along with all of
the branches dependent on the inputs, with the exception of the first branch.

Otherwise, the entire branch located in front of the cursor position will be cut,
deleted, or copied.

After copying or cutting, the deleted or copied part is located on the clipboard
and can now be pasted, as desired.

5-22 907 AC 1131/Issued: 10/99The Editors in 907 AC 11315

In order to do so, you must first select the pasting point. Valid pasting points
include inputs and outputs.

If an operator, a function, or a function block has been loaded onto the clipboard
(As a reminder: in this case all connected branches except the first are located
together on the clipboard), the first input is connected with the branch before the
pasting point.

Otherwise, the entire branch located in front of the pasting point will be replaced
by the contents of the clipboard.

In each case, the last element pasted is connected to the branch located in front
of the pasting point.

Note: The following problem is solved by cutting and pasting: A new
operator is pasted in the middle of a network. The branch located on the right of
the operator is now connected with the first input, but must be connected with
the second input. You can now select the first input and perform the command
"Edit" "Cut". Following this, you can select the second input and perform the
command "Edit" "Paste". This way, the branch is dependent on the second
input.

The Function Block Diagram in
the Online Mode

In the Function Block Diagram, breakpoints can only be set to networks. If a
breakpoint has been set to a network, then the network numbers field will be
displayed in blue. The processing then stops in front of the network where the
breakpoint is located. In this case, the network numbers field will become red.
Using stepping (single step), you can jump from network to network.

The current value is displayed for each variable. Doubleclicking on a variable
opens the dialog box for writing a variable. Here it is possible to change the
present value of the variable. In the case of Boolean variables, no dialog box
appears; these variables are toggled.

The new value will turn red and will remain unchanged. If the "Online" "Write
values" command is given, then all variables are placed in the selected list and
are once again displayed in black.

The flow control is run with the "Online" "Flow control" command. Using the
flow control, you can view the present values that are being carried in the
networks over the connecting lines. If the connecting lines do not carry Boolean
values, then the value will be displayed in a specially inserted field. If the lines
carry Boolean values, then they will be shaded blue in the event that they carry
TRUE. By this means, you can accompany the flow of information while the
PLC is running.

If you place the mouse pointer briefly above a variable, then the type, the
address and the comment about the variable will be displayed in a Tooltip.

5-23907 AC 1131/Issued: 10/99 Editors in 907 AC 1131 5

5.3.2 The Ladder Editor

This is how a POU written in the LD appears in the 907 AC 1131 editor:

Image 5.11: POU in the Ladder Diagram

All editors for POUs consist of a declaration part and a body. These are
separated by a screen divider.

The LD editor is a graphic editor. The most important commands are found in
the context menu (right mouse button or <Ctrl>+<F10>).

For information about the elements, see Ladder Diagram (LD).

Cursor Positions in the LD
Editors

The following locations can be cursor positions, in which the function block and
program accessing can be handled as contacts. POUs with EN inputs and other
POUs connected to them are treated the same way as in the Function Block
Diagram. Information about editing this network part can be found in Chapteron
the FBD Editor.

1. Every text field (possible cursor positions framed in black)

5-24 907 AC 1131/Issued: 10/99The Editors in 907 AC 11315

2. Every Contact or Function Block

3. Every Coil

4. The Connecting Line between the Contacts and the Coils.

The Ladder Diagram uses the following menu commands in a special way:

"Insert" "Contact"

Symbol: Shortcut: <Ctrl>+<O>

Use this command in the LD editor in order to insert a contact in front of the
marked location in the network.

If the marked position is a coil (Cursor Position 3) or the connecting line
between the contacts and the coils (Cursor Position 4), then the new contact will
be connected serially to the previous contact connection.

The contact is preset with the text "???". You can click on this text and change it
to the desired variable or the desired constant. For this you can also use the
Input Assistant.

"Insert" "Parallel Contact"

Symbol: Shortcut: <Ctrl>+<R>

5-25907 AC 1131/Issued: 10/99 Editors in 907 AC 1131 5

Use this command in the LD editor to insert a contact parallel to the marked
position in the network.

If the marked position is a coil (Cursor Position 3) or the connection between
the contacts and the coils (Cursor Position 4), then the new contact will be
connected in parallel to the entire previous contact connection.

The contact is preset with the text "???". You can click on this text and change it
to the desired variable or the desired constant. For this you can also use the
Input Assistant.

"Insert" "Function Block"

Shortcut: <Ctrl>+

You can use this command to open a dialog box for selecting a function block or
a program. You can select between user-defined or standard (default) POUs.

The selected POU is inserted, according to the same rules used to insert a
contact. In both cases, the first input of the POU is set on the input connection,
and the first output is set on the output connection. For this reason both of these
variables definitely must be of the BOOL type. All other POU inputs and outputs
are occupied with the text "???". These default settings can be changed to other
constants, variables, or addresses. For this you can also use the Input
Assistant.

"Insert" "Coil"

Symbol: Shortcut: <Ctrl>+<L>

You can use this command in the LD editor to insert a coil in parallel to the
previous coils.

If the marked position is a connection between the contacts and the coils
(Cursor Position 4), then the new coil will be inserted as the last. If the marked
position is a coil (Cursor Position 3), then the new coil will be inserted directly
above it.

The coil is given the text "???" as a default setting. You can click on this text
and change it to the desired variable. For this you can also use the Input
Assistant.

POUs with EN Inputs

If you want to use your LD network as a PLC for calling up other POUs , then
you must merge a POU with an EN input. Such a POU is connected in parallel
to the coils. Beyond such a POU you can develop the network further, as in the
Function Block Diagram. You can find the commands for insertion at an EN
POU under the menu item "Insert" "Insert at Blocks"

An operator, a function block, or a function with EN input performs the same
way as the corresponding POU in the Function Block Diagram, except that its
execution is controlled on the EN input. This input is annexed at the connecting

5-26 907 AC 1131/Issued: 10/99The Editors in 907 AC 11315

line between coils and contacts. If this connection carries the information "On",
then the POU will be evaluated.

If a POU has been created once already with EN input, then this POU can be
used to create a network. This means that data from usual operators, functions,
and function blocks can flow in an EN POU and an EN POU can carry data to
such usual POUs.

If, therefore, you want to program a network in the LD editor, as in FBD, you
only need first to insert an EN operator in a new network. Subsequently, from
this POU, you can continue to construct from your network, as in the FBD
editor. A network thus formed will perform like the corresponding network in
FBD.

"Insert" "Operator with EN"

Use this command to insert an operator with EN input into a LD network.

The marked position must be the connection between the contacts and the coils
(Cursor Position 4) or a coil (Cursor Position 3). The new operator is inserted in
parallel to the coils and underneath them; it contains initially the designation
AND. If you wish, you can change this designation to another one. For this you
can also use the Input Assistant.

"Insert" "Function Block with
EN"

With this command you can insert a function block with EN input into a LD
network.

The marked position must be the connection between the contacts and the coils
(Cursor Position 4) or a coil (Cursor Position 3). The new function block is
inserted in parallel to the coils, below them. From the Input Assistant dialog box
that appears, you can select whether to insert a user-defined, or a standard
(default) function block.

"Insert" "Function with EN"

With this command you can insert a function with EN input into an LD network.

The marked position must be the connection between the contacts and the coils
(Cursor Position 4) or a coil (Cursor Position 3). The new function is inserted in
parallel to the coils, below them. From the Input Assistant dialog box that
appears, you can select whether to insert a user-defined, or a standard function
block.

"Insert" "Insert at Blocks"

With this command you can insert additional elements into a POU that has
already been inserted (also a POU with EN input). The commands below this
menu item can be executed at the same cursor positions as the corresponding
commands in the Function Block Diagram (See Chapter 5.7).

With Input you can add a new input to the POU.

5-27907 AC 1131/Issued: 10/99 Editors in 907 AC 1131 5

With Output you can add a new output to the POU.

With Operator you can add a new operator to the POU, whose output is
deposited onto the selected input.

With Assignment you can add an assignment to the selected input or output.

With Function you can add a function to the selected input.

With Function Block you can add a function block to the selected input.

"Insert" "Jump"

With this command you can insert a parallel jump in the selected LD editor, in
parallel, at the end of the previous coils. If the incoming line delivers the value
"On", then the jump will be executed to the indicated label.

The marked position must be the connection between the contacts and the
coils(Cursor Position 4) or a coil (Cursor Position 3).

The jump is present with the text "???". You can click on this text and make a
change in the desired label.

"Insert" "Return"

In the LD editor, you can use this command to insert a Return instruction in
parallel at the end of the previous coils. If the incoming line delivers the value
"On," then the processing of the POU in this network is broken off.

The marked position must be the connection between the contacts and the
coils(Cursor Position 4) or a coil (Cursor Position 3).

"Extras" "Paste after"

Use this command in the LD editor to insert the contents of the clipboard as a
serial contact after the marked position. This command is only possible if the
contents of the clipboard and the marked position are networks comprised of
contacts.

"Extras" "Paste below"

Shortcut: <Ctrl>+<U>

Use this command in the LD editor to insert the contents of the clipboard as
parallel contact below the marked position. This command is only possible if the
contents of the clipboard and the marked position are networks comprised of
contacts.

"Extras" "Paste above"

Use this command in the LD editor to insert the contents of the clipboard as
parallel contact above the marked position. This command is only possible if the
contents of the clipboard and the marked position are networks comprised of
contacts.

5-28 907 AC 1131/Issued: 10/99The Editors in 907 AC 11315

"Extras" "Negate"

Symbol: Shortcut: <Ctrl>+<N>

Use this command to negate a contact, a coil, a jump or return instruction, or an
input or output of EN POUs at the present cursor position (Cursor Position 2
and 3).

Between the parentheses of the coil or between the straight lines of the contact,
a slash will appear ((/) or |/|). If there are jumps, returns, or inputs or outputs of
EN POUs, a small circle will appear at the connection, just as in the FBD editor.

The coil now writes the negated value of the input connection in the respective
Boolean variable. Right at this moment, a negated contact switches the status
of the input to the output, if the respective Boolean variable carries the value
FALSE.

If a jump or a return is marked, then the input of this jump or return will be
negated.

A negation can be canceled through renewed negation.

"Extras" "Set/Reset"

If you execute this command on a coil, then you will receive a Set Coil. Such a
coil never overwrites the value TRUE in the respective Boolean variable. This
means that once you have set the value of this variable to TRUE, it will always
remain at TRUE. A Set Coil is designated with an "S" in the coil symbol.

If you execute this command once again, then you will be given a Reset Coil.
Such a coil never overwrites the value FALSE in the respective Boolean
variable. This means that once you have set the value of this variable to
FALSE, it will always remain at FALSE. A Reset Coil is designated with an "R"
in the coil symbol.

If you execute this command repeatedly, the coil will alternate between set,
reset and normal coil.

The Ladder Diagram in the
Online Mode

In Online mode, the contacts and coils in the Ladder Diagram that are in the
"On" state are colored blue. Likewise, all lines over which the "On" is carried are
also colored blue. At the inputs and outputs of function blocks, the values of the
corresponding variables are indicated.

Breakpoints can only be set on networks; by using stepping, you can jump from
network to network.

If you place the mouse pointer briefly above a variable, then the type, the
address and the comment about the variable will be displayed in a Tooltip.

5-29907 AC 1131/Issued: 10/99 Editors in 907 AC 1131 5

5.3.3 The Sequential Function Chart Editor

This is how a POU written in the SFC appears in the 907 AC 1131 editor:

Image 5.12: Sequential Function Chart Editor with an opened Action

All editors for POUs consist of a declaration part and a body. These are
separated by a screen divider.

The Sequential Function Chart editor is a graphic editor. The most important
commands are found in the context menu (right mouse button or
<Ctrl>+<F10>).

For information about the Sequential Function Chart, see Sequential Function
Chart.

The editor for the Sequential Function Chart must agree with the particulars of
the SFC. In reference to these, the following menu items will be of service.

Marking Blocks in the SFC

A marked block is a bunch of SFC elements that are enclosed in a dotted
rectangle. (In the example somewhat above, the step is marked Shift1.)

You can select an element (a step, a transition, or a jump) by pointing the
mouse on this element and pressing the left mouse button, or you can use the
arrow keys. In order to mark a group of several elements, press <Shift> for a
block already marked, and select the element in the lower left or right corner of

5-30 907 AC 1131/Issued: 10/99The Editors in 907 AC 11315

the group. The resulting selection is the smallest cohesive group of elements
that includes both of these elements.

Observe that all commands can only be executed, if they do not contradict the
conventions of the language.

"Insert" "Step Transition
(before)"

Symbol: Shortcut: <Ctrl>+<T>

This command inserts a step in the SFC editor followed by a transition in front
of the marked block.

"Insert" "Step Transition (after)"

Symbol: Shortcut: <Ctrl>+<E>

This command inserts a step in the SFC editor followed by a transition after the
first transition in the marked block.

"Insert" "Alternative Branch
(right)"

Symbol: Shortcut: <Ctrl>+<A>

This command inserts an alternative branch in the SFC editor as a right branch
of the marked block. For this the marked block must both begin and end with a
transition. The new branch is then made up of one transition.

"Insert" "Alternative Branch
(left)"

Symbol:

This command inserts an alternative branch in the SFC editor as the left branch
of the marked block. For this the marked block must both begin and end with a
transition. The new branch is then made up of one transition.

"Insert" "Parallel Branch (right)"

Symbol: Shortcut: <Ctrl>+<L>

This command inserts a parallel branch in the SFC editor as the right branch of
the marked block. For this the marked block must both begin and end with a
step. The new branch is then made up of one step.

"Insert" "Parallel Branch (left)"

Symbol:

5-31907 AC 1131/Issued: 10/99 Editors in 907 AC 1131 5

This command inserts a parallel branch in the SFC editor as the left branch of
the marked block. For this the marked block must both begin and end with a
step. The new branch is then made up of one step.

"Insert" "Jump"

Symbol: Shortcut: <Ctrl>+<U>

This command inserts a jump in the SFC editor at the end of the branch, to
which the marked block belongs. For this the branch must be an alternative
branch.

For a inserted jump then the text field ’Step’ can be selected and be replaced by
the label of the step which is target of the jump.

"Insert" "Transition-Jump"

Symbol:

This command inserts a transition in the SFC editor, followed by a jump at the
end of the selected branch. For this the branch must be a parallel branch.

For a inserted jump then the text field ’Step’ can be selected and be replaced by
the label of the step which is target of the jump.

"Insert" "Add Entry-Action"

With this command you can add an entry-action to a step. An entry-action is
only executed once, right after the step has become active. The entry-action
can be implemented in a language of your choice.

A step with an entry-action is designated by an "E" in the bottom left corner.

"Insert" "Add Exit-Action"

With this command you can add an exit-action to a step. An exit-action is only
executed once, before the step is deactivated. The exit-action can be
implemented in a language of your choice.

A step with an exit-action is designated by an "X" in the lower right corner.

"Extras" "Paste Parallel Branch
(right)"

This command pastes the contents of the clipboard as a right parallel branch of
the marked block. For this the marked block must both begin and end with a
step. The contents of the clipboard must, likewise, be an SFC block that both
begins and ends with a step.

5-32 907 AC 1131/Issued: 10/99The Editors in 907 AC 11315

"Extras" "Paste after"

This command pastes the SFC block on the clipboard after the first step or the
first transition of the marked block. (Normal copying pastes it in front of the
marked block.) This will now be executed, if the resulting SFC structure is
correct, according to the language norms.

"Extras" "Zoom
Action/Transition"

Shortcut: <Alt>+<Enter>

The action of the first step of the marked block or the transition body of the first
transition of the market block is loaded into the editor in the respective
language, in which it has been written. If the action or the transition body is
empty, then the language must be selected, in which it has been written.

"Extras" "Clear
Action/Transition"

With this command you can delete the actions of the first step of the marked
block or of the transitions body of the first transition.

If, during a step, you implement either only the action, the entry-action, or the
exit-action, then the same will be deleted by the command. Otherwise a dialog
box appears, and you can select which action or actions are to be deleted.

If the cursor is located in the action of an IEC step, then only this association
will be deleted. If an IEC step with an associated action is selected, then this
association will be deleted. During an IEC step with several actions, a selection
dialog box will appear.

"Extras" "Step Attributes"

With this command you can open a dialog box in which you can edit the
attributes for the marked step.

5-33907 AC 1131/Issued: 10/99 Editors in 907 AC 1131 5

Image 5.13: Dialog Box for Editing Step Attributes

You can take advantage of three different entries in the step attribute dialog
box. Under Minimum Time, you enter the minimum length of time that the
processing of this step should take. Under the Maximum Time, you enter the
maximum length of time that the processing of this step should take. Note that
the entries are of the TIME type, so you use a TIME constant (i.e. T#3s) or a
variable of the TIME type.Under Comment you can insert a comment to the
step. With "Extras" "Options" you can then adjust whether, in the SFC editor,
the comments or the time setting for the steps should be displayed. On the
right, next to the step, either the comment or the time setting will appear.

If the maximum time is exceeded, SFC flags are set for the user to make
inquiries.

The example shows a step whose execution should last at least two, and at the
most, ten seconds. In Online mode, there is, in addition to these two times, a
display of how long the step has already been active.

"Extras""Time Overview"

With this command you can open a window in which you can edit the time
settings of your SFC steps:

Image 5.14: Time Boundaries Overview for a SFC POU

5-34 907 AC 1131/Issued: 10/99The Editors in 907 AC 11315

In the time boundaries overview, all steps of your SFC POU are displayed. If
you have entered a time boundary for a step, then the time boundary is
displayed to the right of the step (first, the lower limit, then the upper limit). You
can also edit the time boundaries. To do so, click on the desired step in the
overview. The name of the step is then shown below in the window. Go to the
Minimum Time or Maximum Time field, and enter the desired time boundary
there. If you close the window with OK, then all of the changes will be stored.

In the example, steps 2 and 6 have a time boundary. Shift1 lasts at least two,
and at most, ten seconds. Shift2 lasts at least seven, and at most, eight
seconds.

"Extras" "SFC-Overview"

With this command you are given a reduced display of the active SFC POU. A
check appears before the menu item. For better orientation you can display the
names of the steps, transitions, and jumps in tooltips by placing the mouse
pointer on an element.

In order to switch back to the normal SFC display, set a marking and then either
press <Enter> or select the command once again, and the change will take
place.

Image 5.15: SFC Overview

"Extras" "Options"

With this command you open a dialog box in which you can set different options
for your SFC POU.

5-35907 AC 1131/Issued: 10/99 Editors in 907 AC 1131 5

Image 5.16: Dialog Box for Sequential Function Chart Options

In the SFC Options dialog box you can undertake five entries. Under Step
Height, you can enter how many lines high an SFC step can be in your SFC
editor. 4 is the standard setting here. Under Step Width, you can enter how
many columns wide a step should be. 6 is the standard setting here. You can
also preset the Display at Step. With this, you have three possibilities: You can
either have Nothing displayed, or the Comment, or the Time Limits. The last
two are shown the way you entered them in "Extras" "Step Attributes".

"Extras" "Associate Action"

With this command actions and Boolean variables can be associated with IEC
steps.

To the right of, and next to the IEC step, an additional divided box is attached,
for the association of an action. It is preset in the left field with the qualifier "N"
and the name "Action." Both presets can be changed. For this you can use the
Input Assistant.

New actions for IEC steps are created in the Object Organizer for an SFC POU
with the "Project" "Add Action" command.

"Extras" "Use IEC-Steps"

Symbol:

If this command is activated (denoted by a check in front of the menu item and
a printed symbol in the Tool bar), then IEC steps will be inserted instead of the
simplified steps upon insertion of step transitions and parallel branches.

If this option is switched on, the Init step is set as an IEC step when you create
a new SFC POU.

This settings are saved in the file "907 AC 1131 .ini" and are restored when
907 AC 1131 gets started again.

5-36 907 AC 1131/Issued: 10/99The Editors in 907 AC 11315

The Sequential Function Chart
in the Online Mode

With the Sequential Function Chart editor in Online mode, the currently-active
steps will be displayed as blue steps. If you have set it under "Extras"
"Options", then the time management is depicted next to the steps. Under the
lower and upper bounds that you have set, a third time indicator will appear
from which you can read how long the step has already been active.

In the picture above the step depicted has already been active 8 seconds and
410 milliseconds. The step must, however, be active for at least 7 minutes
before the step will be left.

With "Online" "Toggle Breakpoint" , a breakpoint is set at a step. The
processing then stops in front of the execution of this step. The step with the
breakpoint is colored light blue.

If several steps are active in a parallel branch, then the active step whose action
will be processed next is displayed in red.

If IEC steps have been used, then all active actions in Online mode will be
displayed in blue.

SFC also includes support for stepping a step at a time ("Online" "Step Over").
With this stepping, the program will always proceed to the next step whose
action is to be executed.

With "Online" "Step in" you can step into actions or transitions. Within the
transitions or actions, all debugging capabilities of the corresponding editor are
at the user’s disposal.

If you place the mouse pointer briefly above a variable, then the type and the
comment about the variable will be displayed in a Tooltip.

5-37907 AC 1131/Issued: 10/99 Editors in 907 AC 1131 5

Image 5.17: Sequential Function Chart in the Online Mode with an Active Step (Shift1)
and a Breakpoint (Step10)

5-38 907 AC 1131/Issued: 10/99The Editors in 907 AC 11315

6-1907 AC 1131/Issued: 10/99 The Resources 5

6 The Resources

6.1 Overview of the Resources

In the Resources register card of the Object Organizer, there are objects for
configuring and organizing your project and for keeping track of the values of
the variables:

• Global Variables that can be utilized in the entire project; the global
variables of the project as well as the libraries.

• PLC Configuration for configuring your hardware
• Task Configuration for controlling your program control via tasks
• Sampling Trace for graphic logging of variable values
• Watch and Receipt Manager for indicating and presetting variable values

Image 6.1: Resources

6.2 Global Variables

Editing Global Variables

In the Object Organizer, you will find three objects in the Resources register
card in the Global Variables folder (default names of the objects in
parentheses).

• Access Variables List (Access Variables)
• Global Variables List (Global Variables)
• Variables Configuration (Variable Configuration)

All variables defined in these objects are recognized throughout the project.

If the global variables folder is not opened up (plus sign in front of the folder),
you can open it with a doubleclick <Enter> in the line.

Select the corresponding object. The "Object Open" command opens a
window with the previously defined global variables. The editor for this works
the same way as the declaration editor.

6-2 907 AC 1131/Issued: 10/99The Resources5

Several Variables Lists

Access variables (Key Word VAR_ACCESS), normal global variables
(VAR_GLOBAL), and variable configurations (VAR_CONFIG) must be defined
in separate objects.

If you have declared a large number of global variables, and you would like to
structure your global variables list better, then you can create further variables
lists.

In the Object Organizer, select the Global Variables folder or one of the
existing objects with global variables. Then execute the "Project" "Object
Add" command. Give the object that appears in the dialog box a corresponding
name. With this name an additional object will be created with the key word
VAR_GLOBAL. If you prefer an object with access variables, or if you want to
have a variable configuration, change the corresponding key word to
VAR_ACCESS or VAR_CONFIG.

6.2.1 Access Variables

Access variables assist in communicating with other PLCs (Programmable
Logic Controllers).

They are defined in an object between the key words VAR_ACCESS and
END_VAR. In the Object Organizer in the Resources register card, the object

 Access_Variables is generally available. The object can be renamed, and
further objects for access variables can be created.

The editor for access variables works the same way as the declaration editor.

Access variables can be used in the entire project.

Syntax:

VAR_ACCESS
<Identifier> : "<Access Path>" : <Access Mode> <Type>

END_VAR

In the project, an access variable is addressed through its <Identifier>, just like
any other variable. The <Access Path> is specified in single quotes. The access
path and the implementation are program specific.

The two <Access Modes>, READ_ONLY and READ_WRITE are available. If
no access mode is specified, then READ_ONLY will be accepted. This means
that the variable in the project can only be read. With READ_WRITE, you can
also access the variable by writing.

Examples:

sensor3 : "control2.sens3": BOOL READ_ONLY;
counter2 : "control2.count2": UINT;
displaytext : "control2.text": STRING READ_WRITE;

6-3907 AC 1131/Issued: 10/99 The Resources 5

6.2.2 Global Variables

Normal global variables are defined in an object between the key words
VAR_GLOBAL and END_VAR. In the Object Organizer in the Resources
register card, the object Global_Variables will generally be available. The
object can be renamed and further objects for global variables can be created.

To create a new global variables list open the dialog New global variable list
by ’Project’ ’Object’ ’Add’. Here you insert a Name for the new list. If you want to
use an export file (*.esp) or a DCF file (*.dcf), which contains the relevant
variable, you can connect it by Link to file. Press Select to get the standard
dialog Select text file. DCF files are converted to IEC syntax when called.

If the settings in dialog ’New global variable list’ are confirmed by pressing the
OK button, the new object is created and the variables’ editor opens. The editor
for global variables works just the same as the Declaration Editor. Though if an
external variable list is used, it cannot be edited in 907 AC 1131 . External
variable lists only can be edited external and they will be read each time the
project is opened or compiled again.

Global variables can be used in the entire project.

Syntax:

VAR_GLOBAL
(*Declaration of Variables *)

END_VAR

Global retain variables additionally receive the key word RETAIN.

Syntax:

VAR_GLOBAL RETAIN
(*Declaration of Variables *)

END_VAR

Global constants additionally receive the key word CONSTANT.

Syntax:

VAR_GLOBAL CONSTANT

(*Declaration of Variables *)
END_VAR

6.2.3 Variable Configuration

In function blocks it is possible to specify addresses for inputs and outputs that
are not completely defined, if you put the variable definitions between the key
words VAR and END_VAR. Addresses not completely defined are identified
with an asterisk.

Here two local I/O-variables are defined, a local-In (%I*) and a local-Out (%Q*).

If you want to configure local I/Os for variables configuration in the Object
Organizer in the Resources register card, the object Variable_Configuration

6-4 907 AC 1131/Issued: 10/99The Resources5

will generally be available. The object then can be renamed and other objects
can be created for the variables configuration.

The editor for variables configuration works like the declaration editor.

Variables for local I/O-configurations must be located between the key words
VAR_CONFIG and END_VAR.

The name of such a variable consists of a complete instance path through
which the individual POUs and instance names are separated from one another
by periods. The declaration must contain an address whose class (input/output)
corresponds to that of the incompletely specified address (%I*, %Q*) in the
function block. Also the data type must agree with the declaration in the function
block.

Configuration variables, whose instance path is invalid because the instance
does not exist, are also denoted as errors. On the other hand, an error is also
reported if no configuration exists for an instance variable. In order to receive a
list of all necessary configuration variables, the "All Instance Paths" menu
item in the "Insert" menu can be used.

Example:
Assume that the following definition for a function block is given in a program:

PROGRAM PLC_PRG
VAR

Hugo: locio;
Otto: locio;

END_VAR

Then a corrected variable configuration would look this way:

VAR_CONFIG
PLC_PRG. Hugo.loci AT %IX1.0 : BOOL;
PLC_PRG. Hugo.loco AT %QX0.0 : BOOL;
PLC_PRG. Otto.loci AT %IX1.0 : BOOL;
PLC_PRG.Otto.loco AT %QX0.3 : BOOL;

END_VAR

Note: Be aware not to describe an output, which is used in the variables
configuration, additionally within the project or by a variable (AT declaration).
This would not be noticed.

"Insert" "All Instance Paths"

With this command a VAR_CONFIG - END_VAR-block is generated that
contains all of the instance paths available in the project. Declarations already
on hand do not need to be reinserted in order to contain addresses already in
existence. This menu item can be found in the window for configuration of
variables if the project is compiled ("Project" "Rebuild All").

6-5907 AC 1131/Issued: 10/99 The Resources 5

6.2.4 Document Frame

Document Frame

If a project is to receive multiple documentations, perhaps with German and
English comments, or if you want to document several similar projects that use
the same variable names, then you can save yourself a lot of work by creating a
docuframe with the "Extras" "Make Docuframe File" command.

The created file can be loaded into a desired text editor and can be edited. The
file begins with the DOCUFILE line. Then a listing of the project variables
follows in an arrangement that assigns three lines to each variable: a VAR line
that shows when a new variable comes; next, a line with the name of the
variable; and, finally, an empty line. You can now replace this line by using a
comment to the variable. You can simply delete any variables that you are
unable to document. If you want, you can create several document frames for
your project.

Image 6.2: Windows Editor with Document Frame

In order to use a document frame, give the "Extras" "Link Docu Frame"
command. Now if you document the entire project, or print parts of your project,
then in the program text, there will be an insertion of the comment produced in
the docuframe into all of the variables. This comment only appears in the
printout!

"Extras" "Make Docuframe File"

Use this command to create a document frame. The command is at your
disposal, whenever you select an object from the global variables.

A dialog box will open for saving files under a new name. In the field for the
name file, the *.txt extension has already been entered. Select a desired name.
Now a text file has been created in which all the variables of your project are
listed.

6-6 907 AC 1131/Issued: 10/99The Resources5

"Extras" "Link Docu File"

With this command you can select a document frame.

The dialog box for opening files is opened. Choose the desired document frame
and press OK. Now if you document the entire project, or print parts of your
project, then in the program text there will be an insertion of the comment
produced in the docuframe into all of the variables. This comment only appears
in the printout!

To create a document frame, use the "Extras" "Make Docuframe File"
command.

6.3 PLC Configuration

The PLC Configuration depends on the configuration of the corresponding
hardware. Therefore, at this juncture, only the basic workings of the CoDeSys
hardware configuration will be described.

The PLC Configuration is found as an object in the register card Resources
in the Object Organizer. With the PLC Configuration editor, you must describe
the hardware the opened project is established for. For the program
implementation, the number and position of the inputs and outputs is especially
important. With this description 907 AC 1131 verifies whether the IEC
addresses used in the program also actually exist in the hardware.

For inputs and outputs symbolic names can be assigned. The correct notation
of an IEC address then looks like that: the symbolic name is followed by an AT
and the address where the input/output can be accessed. At least the format of
the input or output variable is given (for example: inputname AT %IW1.0 : INT;).

PROFIBUS-DP

907 AC 1131 supports a hardware configuration corresponding to the
PROFIBUS DP standard. A profibus system consists of masters and appending
slave modules. To qualify them for data exchange they have to be configured.
At system start each master parametrizes the slaves which have been assigned
to it during configuration. During operation the master sends and/or requests
data to or from the respective slaves. The configuration of master and slave
modules in 907 AC 1131 is based on the GSD files. The GSD files are delivered
by the hardware manufacturer and contain a standardized description of the
characteristic properties of a PROFIBUS-DP device. During the PLC
configuration only those GSD files are regarded which are stored in the sub-
directory PLCONF in the lib-directory. For this reason new GSD files have to be
copied to this directory before. Then with the help of dialogues the
corresponiding devices can be inserted in the configuration tree and their
parameters can be edited.

6-7907 AC 1131/Issued: 10/99 The Resources 5

6.3.1 Working in the PLC Configuration

If a new project was created, a minimal PLC Configuration is to be considered.

• Select an element by a mouseclick or use the arrow keys to move the
dotted rectangle onto the desired element.

• The words "Hardware Configuration" stand at the heading of the PLC
Configuration. Elements that begin with a plus sign are organization elements
and contain subelements. To open an element, select the element and
doubleclick this plus sign or press <Enter>. You can close opened elements
(minus sign in front of the element) the same way.

• If the cursor is located on an element, you can set an edit control box
around the name by doubleclicking on the entry or by using the <Space bar>.
Then you can change the designation of the input/output.

 In order to set up the In-/Output modules use the command ’Extras’
’Properties’.

• With the ’Insert’ ’Insert Element’ command, you can paste the selected
element in front of the selected element.

• With the ’Insert’ ’Append Subelement’ command, the selected element
will be appended to the selected element as the last subelement.

• The most important commands are found in the context menu (right mouse
button or <Ctrl>+<F10>).

Image 6.3: PLC Configuration, Example with DP master and DP Slave

6.3.2 Doing the PROFIBUS-DP Configuration

Inserting PROFIBUS-DP
devices

Select "Hardware-Configuration" which you always find in the first line of the
configuration editor. Then use the command "Insert" "Insert subelement" to
insert a PROFIBUS-DP device directly below. Corresponding to the hardware

6-8 907 AC 1131/Issued: 10/99The Resources5

you want to describe you can insert a master as well as a slave coupler at this
first level position.

Image 6.4: Select a PROFIBUS-DP Master (resp. Slave)

The insert command opens a dialog Select a ProfibusDP Master or Select a
ProfibusDP Slave. There you find a list of the available devices (Device
Name). This list results from the selection of GSD files which are stored in the
directory PLCCONF within the library directory (In this directory you also have
to put the bitmaps which might be used for the design of the dialogues). Select
a coupler device from the list by mouseclick. Additionally there is an input field
(Card Number) for the slot of the coupler which should be addressed. Max. two
(master or slave) cards are available, referenced by number 1 (07 KT 97
R0120) and 2 (07 KT 97 R0162). This card number is regarded during the
allocation of the IEC addresses for the slave modules which are assigned to this
master. Accordingly an IEC address can look like this: %1.IB0. The '1‘
references the card number.

The following IEC address types can be inserted:

Type Range

Word z.B. %QW1.4 (4 = word offset) %IW1.0 - %IW1.1792
%IW2.0 - %IW2.1792

Byte z.B. %IB2.3 (3 = byte offset) %IB1.0 - %IB1.3583
%IB2.0 - %IB2.3583

Note: Bit addresses only can be used in the SPS program:

Bit z.B. %IX1.0.15 (0 = word number,
15 = bit number)

%IX1.0.0 - %IX1.1792.15
%IX2.0.0 - %IX2.1792.15

6-9907 AC 1131/Issued: 10/99 The Resources 5

The dialog also shows some basic data of the chosen device, which are given
in the GSD file: manufacturer, revision, id number, HW and SW release
number, GSD file name. After closing the dialog by OK the module is inserted in
the configuration tree.

Below the master module you can insert one or several slaves. For this purpose
select the master and then use the command "Insert" as described above.

The PLC configuration as described here in the project and the parameters
definition of all PROFIBUS-DP modules will be loaded into the PLC with each
download and it will be stored in the flash of the PLC by "Online" "Create boot
project (Flash User Program)".

Properties of 07 KT 97 as
DP master

The parameters of 07 KT 97 as a master device, described by the GSD file, can
be adapted to the actual demands of your configuration. For this purpose select
the master in the PLC configuration tree. Use the command "Extras"
"Properties" (or the right mouse key, "Properties") to open a dialog, titled with
the masters device name. Here, on two registers, you can edit the Standard
Parameters and the Bus Parameters of the module. These parameters result
of the settings given in the GSD file.

Image 6.5: Properties of the DP Master (Standard Parameters)

6-10 907 AC 1131/Issued: 10/99The Resources5

• The Standard Parameters of a master module

Info Vendor, Revision, Id, HW and SW Release number,
GSD filename

Modul Name can be edited

Addresses Station Address: the allowed range is 0-126, each
module new inserted automatically gets the next higher
address (please regard: address 126 is the DP slave
default address). Manual input is possible, there is a
check for addresses used twice.

Highest Station Address: number of the highest
allocated station address, you can edit this address
number to reduce the GAP range (i.e. the range of
addresses, starting at 0, which is run through during
search for active bus members)

Diagnosis Address: diagnosis data can be called by
function POUs (see chapter ’Inserting PROFIBUS-DP
devices’ for the IEC address types allowed for input)

Mode Auto Clear Mode: If this mode is activated, all slaves are
switched into the save state by the master if one slave
reports "not ready for data exchange". Otherwise master
and slaves remain in operating state even if one of the
slaves is not ready.

Automatic Start: Currently not supported. PROFIBUS-
DP starts and stops dependent on the RUN/STOP switch

Automatic Address: If this mode is activated, the IEC
addresses of the PROFIBUS I/Os for the subsequently
inserted modules will be awarded automatically in a way
that they are in a row and that overlapping is avoided.

Press the button GSD file to open the module specific GSD file.

The button Groups opens the dialog Group Properties. These properties refer
to the masters slaves. Up to eight groups with different data exchange mode
parameter sets can be established. Define for each group whether it should run
in Freeze Mode and/or in Sync Mode. By assigning the slaves to these groups
(see below, Properties of a DP Slave, Groups) the data exchange may be
synchronized by a global control command of the master. By a freeze command
the modules are caused to ’freeze’ their actual input values and to send them
synchronously during the subsequent data exchange. By a sync command the
slaves are caused to transmit the data, which they receive during the
subsequent data exchange from the master, synchronously to the outputs.

To switch on or off the freeze/sync option click on the corresponding position in
the table and place a ‚X‘, where you want to switch on the mode. Alternatively

6-11907 AC 1131/Issued: 10/99 The Resources 5

you can use the right mouse button and choose "activate" or "deactivate" from
the menu. Furtheron you can edit the Group Name.

Image 6.6: Properties of a DP Master (Standard Parameters, Group Properties)

• The Bus Parameters of a master module

The parameters defined in this dialog describe the communication timing. The
particular values are calculated automatically dependent on the baud rate and
the settings given in the GSD file. Optionally all parameters can be edited
manually. Please note that this should be done only by experienced PROFIBUS
users, for undefined behaviour of the system could occur in case of faulty
values.

Image 6.7: Properties of a DP Master (Bus Parameters)

6-12 907 AC 1131/Issued: 10/99The Resources5

Baud Rate a selection list of the settings given in the GSD file; but
you only can feed in a rate, which is supported by all
slaves

Optimize if this option is activated, the parameter values given
in the dialog ’Bus Parameters’ get optimized
automatically regarding the settings in the GSD file

Slot Time period of time which the master at least waits for the
first sign of the slaves response telegram

Min. Station Delay min. TSDR: time in Tbit1, min. period of time a bus
participant has to wait before sending an answer
(min. 11 TBit)

Max. Station Delay max.TSDR: max. period of time within which a slave
must answer

Quiet Time TQUI (Tbit1): break period which has to be regarded
when NRZ signals have to get converted into other
codes. (shift time for repeaters, depends on the baud
rate)

Target Rotation Time TTR (Tbit1): defined period of time for the rotation of
the token in the bus; this period is the sum of the
times for token-holding of all masters in the bus
system

Gap Update Factor GAP update factor G: number of rotations, after which
the next newly added active station is searched within
the GAP (address range of the master

Max. Retry LImit max. number of retries of the master to call the slave
in case of not valid answers

Min Slave Interval time period between two bus cycles, within which the
slave can answer on a request from the master (time
base 100 µs); the value entered here has to be
coordinated with that given in the GSD file

Poll Timeout maximum period of time, after which the requestor
must have polled the answer from the requestor (DP
master class 2) in a master-master communication
(time base 1 ms)

Data Control Time period of time, within which the master indicates its
state towards its slaves; at the same time the master
checks, whether there has occured at least one data
exchange event during this period and does an update

1 Tbit: time unit for the transmission of a bit over a PROFIBUS; reciprocal value of the
transmission rate; for example: 1 Tbit at 12Mbaud = 1/12.000.000 Bit/sek = 83ns)

6-13907 AC 1131/Issued: 10/99 The Resources 5

of the Data_Transfer_List

Watchdog Time interval of watchdog activity; currently not used (fixed
on 400 ms)

Properties of a DP slave

To describe a system completely not only the parameters of a DP master but
also the configuration of the assigned slaves has to be done. For this purpose
select the slave device in the configuration tree. Use the command "Extras"
"Properties" (or the right mouse button, "Properties") to open a dialog, titled with
the device name. Here you get four registers to do the settings for the Standard
Parameters, the Input/Outputs, the additonal Parameters and the Groups
definitions of the slave.

• The Standard Parameters of the slave:

Image 6.8: Properties of a DP Slave (Standard Parameters)

6-14 907 AC 1131/Issued: 10/99The Resources5

Info Vendor, Revision, HW and SW Release Number,
GSD Filename, Slavetype

IEC Addresses Output Address, Input Address: If in the base
parameters of the DP master the option "addresses
automatically" is activated, only the first address
allocated in the bus system can be here; all further
addresses will be allocated subsequently. If this
option is not activated, all addresses can be
assigned manually. Please regard: there is no
check for double allocations !

Diagnosis Address: currently not supported;
diagnosis data can be called by function POUs
(see chapter ’Inserting PROFIBUS-DP devices’ for
the IEC address types allowed for input)

Standard Parameters Identnumber: given by the PNO, unique
identification number for the device; definite
reference between the DP slave and the
corresponding GSD file

TSDR (Tbit): Time Station Delay Response: period
of time a slave at least has to wait before
answering to the master (min. 11 Tbit)

Lock/Unlock: the slave is locked/unlocked for data
exchange with other masters

0: min. TSDR and slave specific parameters can be
 overwritten
1: slave is unlocked for other masters
2: slave is locked for other masters, all parameters
are taken over
3: slave is unlocked again for other masters

Identification Station Address (see ‚Properties of a Master
Module‘), Station Name (= device name)

Activation slave is activ/not activ in the actual configuration; if
"not activ" is selected, the configuration data of the
slaves are transmitted to the coupler, but there will
be no data exchange over the bus

Watchdog If Watchdog Control is activated, the shown
watchdog time is valid (base time 10 ms); if the
slave gets no message from the master within this
period of time, it changes back to initialization state

Press the button GSD file to show the GSD file of the module.

6-15907 AC 1131/Issued: 10/99 The Resources 5

• The Input/Outputs of the slave

The left window in this dialog shows all input, output and input/output modules
available with the slave device. The right window shows the chosen
configuration of inputs and outputs.

If you are configuring a so-called "modular" slave (i.e. a device which can be
configurated with various I/O modules), the selection of inputs and outputs can
be done as follows: Select a module in the left window and copy it to the right
window by a mouse-click on the >>.

Image 6.9: Properties of a DP Slave (Input/Output)

It is not possible to create the modules list in the same way if you have a "non-
modular" slave device. This type of slave first forces a closed list of inputs and
outputs in the right window. But you can correct the list by selecting the
modules you do not want to use and press the button Delete to get them out of
your configuration.

6-16 907 AC 1131/Issued: 10/99The Resources5

Configuring your PLC you have to regard the maximum allowed data length and
number of modules, which are defined in the GSD file. To make that more
comfortable, these data are shown in the upper part of the dialog. The block on
the left shows the allowed max. values, the right one shows the sums actually
resulting of the configuration as displayed in the right window. If the actual
values exceed the limit, an error message comes up.

Using the button Properties you get the dialog Module Properties for the
module which has been selected last in the left or right window. Here you can
see the modules Name, the Config (code of the module description according
to the PROFIBUS standard) and the length of inputs and outputs (Length Input
(Byte), Length Output (Byte)). In case the GSD file lists additonal parameters
(Parameter) besides the standard set, for those the values (Value) and value
ranges (Allowed Values) are displayed in a table. If the option Symbolic
Names is activated, the symbolic names are used in this table.

Image 6.10: Properties of a DP Slave (Input/Output, Module Properties)

• Manufacturer Specific (User) Parameters of a slave module:

This dialog shows various parameters which may be contained in the GSD file
of the device addtionally to the standard set of parameters. Their values
displayed in the column Value can be edited by doubleclick or by using the right
mouse button. The range of Allowed Values is shown in the right column.

If there are symbolic names defined for the parameters in the GSD file, you can
make them used in this table by activating the option Symbolic names in the
upper right corner of the dialog. Furtheron you get displayed the value of the
Length of user parameters in bytes.

6-17907 AC 1131/Issued: 10/99 The Resources 5

Image 6.11: Properties of a DP Slave (Parameters)

• The assignment of the slave module to Groups

6-18 907 AC 1131/Issued: 10/99The Resources5

Image 6.12: Properties of a DP Slave (Groups)

In this dialog you can assign the slave to one or several of the eight groups
which can be defined with various settings concerning the Sync. Mode and the
Freeze Mode. These group definitions can be done in the dialog "Global Group
Properties" within the configuration of the master (see chapter ’Properties of
07 KT 97 as DP master’, ’Standard Parameters’). The button Global Group
Properties as well leads to this dialog.

If the slave is assigned to a group, a plus sign appears at the left of the group
number in the column Group Membership. To assign or to remove the slave
to/from a group do the follwowing: Select the group number by mouseclick.
Then click once more at the left of the group number or alternatively choose
"Insert slave into group" or "Delete slave from group" by the right mouse button.

A slave device only can be assigned to a group, if it supports the properties set
for those. The corresponding properties of the slave (Sync. Mode / Freeze
Mode) are shown above the table. Properties supported by the device are
marked with a check (�).

6-19907 AC 1131/Issued: 10/99 The Resources 5

Properties of 07 KT 97 as a
DP Slave

If 07 KT 97 is used in the slave mode the parameters can be adapted to the
given requirements in the same way as if used in the master mode. For this
purpose in the PLC configuration editor use "Append Subelement"
"DP-Slave" (see ‚Inserting PROFIBUS-DP devices'). In the dialog which opens
then select 07 KT 97-DPS from the device list (Device Name), put in the
required Card Number (1 for 07 KT 97 R120, 2 for 07 KT 97 R162) and confirm
with OK. Mark the entry in the configuration tree. With the command
'"Extras'" "Properties" (or right mouse button, properties) you get a dialog,
titled with the device name. Here you find two registers where the Standard
Parameters and the configuration of the Input/Outputs of the slave can be
defined.

• The Standard Parameters of 07 KT 97 as a DP Slave (used in the slave
mode):

Info Vendor, Revision, HW and SW Release Number,
GSD Filename, Slavetype

IEC Addresses Output Address, Input Address: Input of the start
addresses for the input and output data, subsequent
addresses are set in ascending order

Diagnosis Address: currently not supported;
diagnosis data can be called by function POUs (see
chapter 'Inserting PROFIBUS-DP devices' for the IEC
address types allowed for input)

Identification Station Address (see ‚Properties of a Master
Module‘), Station Name (= device name)

Press the button GSD file to show the GSD file of the module.

6-20 907 AC 1131/Issued: 10/99The Resources5

Bild 6.13: Properties of 07 KT 97 as DP-Slave (Standard Parameters)

• Input/Outputs of 07 KT 97 as DP Slave (used in the slave mode):

The 07 KT 97 is a modular slave in PROFIBUS DP although its inputs and
outputs are not extensible. The modular description is used to reflect the
arrangement of virtual modules. By that the highest possible flexibility in I/O-
configuration is reached. It is not necessary that the data transferred by
PROFIBUS lie directly at the inputs and outputs of the PLC. Each variable used
in the program can be sent or received. The selection of virtual modules is done
as described in the following: Select the desired input resp. output modul from
the list on the left side of the dialog by mouseclick and copy it to the
configuration list on the right side by the button >>. Wrong settings can be
corrected by selecting the entry in the configuration list and pressing the button
Delete.

6-21907 AC 1131/Issued: 10/99 The Resources 5

Bild 6.14: Properties of 07 KT 97 as DP Slave (Input/Output)

Configuring your PLC you have to regard the maximum allowed data length and
number of modules, which are defined in the GSD file. To make that more
comfortable, these data are shown in the upper part of the dialog. The block on
the left shows the allowed max. values, the right one shows the sums actually
resulting of the configuration as displayed in the right window. If the actual
values exceed the limit, an error message comes up.

Using the button Properties you get the dialog Module Properties for the
module which has been selected last in the left or right window. Here you can
see the modules Name, the Config (code of the module description according
to the PROFIBUS standard) and the length of inputs and outputs (Length Input
(Byte), Length Output (Byte)). In case the GSD file lists additonal parameters
(Parameter) besides the standard set, for those the values (Value) and value
ranges (Allowed Values) are displayed in a table. If the option Symbolic
Names is activated, the symbolic names are used in this table.

6-22 907 AC 1131/Issued: 10/99The Resources5

Bild 6.15: Properties of 07 KT 97 as a DP Slave (Input/Output/Module Properties)

It is not necessary to assign the 07 KT 97, when used as a DP slave, to a group
(see "Properties of a DP Slave, Groups"). This is done automatically by the
corresponding master during the implementing run of the system.

6.4 Task Configuration

In addition to declaring the special PLC_PRG program, you can also control the
processing of your project using the task management.

The Task Configuration is found as an object in the Resources register card
in the Object Organizer. The task editor contains a series of tasks. The task
declaration consists of the name of the task, an entry for the priority the task is
to have, and an entry for the condition under which the task is to be executed.
This requirement can either be a time interval, according to which the task is to
be executed, or a global variable that, in the event it has a rising edge, brings
about an execution.

For each task you can now specify a series of programs that will be started by
the task. If the task is executed in the present cycle, then these programs will be
processed the length of one cycle.

The Task Configuration is displayed in the following form:

• The Task Configuration is located in the first line.
• Underneath and indented from the Task Configuration, you will find a

sequence of task entries (with name, priority, interval, and occurrence).
• Below each task entry, there is again a series of program call ups.

6-23907 AC 1131/Issued: 10/99 The Resources 5

Image 6.16: Example for a Task Configuration

In this example of a Task Configuration, Task2 has a lower priority than Task1.
Task1, however, is only executed every two seconds. (The entry under Single is
disregarded.) Thus, in this Task Configuration, Task1 is executed every two
seconds, and, in between, Task2 can be executed at any time, provided that the
global variable "Schalten" has a rising edge.

Which task is being processed?

For the execution, the following rules apply:

• That task is executed, whose condition has been met; i.e., its specified time
has expired, or after its condition variable exhibits a rising edge.

• If several tasks have a valid requirement, then the task with the highest
priority will be executed.

• If several tasks have valid conditions and equivalent priorities, then the task
that has had the longest waiting time will be executed first.

• The most important commands are found in the context menu (right mouse
button or <Ctrl>+<F10>).

Working in the Task
Configuration

• At the heading of the Task Configuration are the words "Task
Configuration." If a plus sign is located before the words, then the sequence list
is closed. By doubleclicking on the list or pressing <Enter>, you can open the
list. A minus sign now appears. By doubleclicking once more, you can close the
list again.

• For every task, there is a list of program call-ups attached. Likewise, you
can open and close this list the same way.

• With the "Insert" "Insert Task" command, you can insert a task.

• With the "Insert" "Insert Program Call", a program call will be inserted.

• With the "Extras" "Edit Entry" command, you can edit the task
characteristics or the program call-up, depending on the selected element.

6-24 907 AC 1131/Issued: 10/99The Resources5

• By clicking on the task or program name, or by pressing the <Space bar>,
you can set an edit control box around the name. Then you can change the
designation directly in the task editor.

"Insert" "Insert Task" or "Insert"
"Append Task"

With this command you can insert a new task into the Task Configuration.

If a task is selected, then the "Insert Task" command will be at your disposal.
The new task will be inserted in front of the cursor. If the words Task
Configuration are selected, then the "Append Task" is available, and the new
task will be appended to the end of the existing list.

The dialog box will open for you to set the task attributes.

Image 6.17: Dialog Box for Setting Task Attributes

In the dialog box you can enter the desired attributes: the Name; the Priority
(a number between 0 and 31, with the following validities: 0 has the highest,
and, 31, the lowest priority); the Interval after which the task should be started
again; or a variable that, following a raising edge, will cause an execution of the
task (in the Single field). With the Select... button, you can open the Input
Assistant to select from the declared variables.

If an entry is on hand for both the interval and for the variable, then only the
interval time will be considered for the execution requirement. If an entry has
not been made in either of the two fields, then only the priority with the counter
will be considered. This means that in every cycle the task will be considered to
be executable. It will only cease to be executed if another task of higher priority
is likewise executable.

"Insert" "Insert Program Call" or
"Insert" "Append Program Call"

With these commands you will open the dialog box for entering a program call
to a task in the Task Configuration.

With Insert Program Call", the new program call is inserted in front of the
cursor, and with "Append Program Call", the program call is appended to the
end of the existing list.

6-25907 AC 1131/Issued: 10/99 The Resources 5

Image 6.18: Dialog box for Program Call Entry

In the field, specify a valid program name for your project, or open the Input
Assistant with the Select button to select a valid program name. If the selected
program requires input variables, then enter these in their usual form and of the
declared type (for example, prg(invar:=17)).

"Extras" "Edit Entry"

Depending on the element selected, you can use this command in the Task
Configuration to open either the dialog box for setting the task attributes (see
"Insert" "Task") or the dialog box for entering the program call (see "Insert"
"Program Call").

If the cursor is located at the task entry, and there is no list of program calls
appended to the task entry, then you open the dialog for setting the
doubleclicking on the entry or by pressing <Enter>.

If the cursor is located on an entry for a program call, then you can also open
the dialog box for editing the program entry by doubleclicking on the entry.

By clicking on the task or program name, or by pressing the <Space bar>, you
can set an edit control box around the name. Then, you can change the
designation directly in the task editor.

"Extras" "Set Debug Task"

With this command a debugging task can be set in Online mode in the Task
Configuration. The text [DEBUG] will appear after the set task.

The debugging capabilities apply, then, only to this task. In other words, the
program only stops at a breakpoint if the program is gone through by the set
task.

6.5 Sampling Trace

Sample tracing means that the progression of values for variables is traced over
a certain time frame. These values are written in a ring buffer (trace buffer). If
the memory is full, then the "oldest" values from the start of the memory will be
overwritten. As a maximum, 20 variables can be traced at the same time. A
maximum of 500 values can be traced per variable.

6-26 907 AC 1131/Issued: 10/99The Resources5

Since the size of the trace buffer in the PLC has a fixed value, in the event of
very many or very wide variables (DWORD), fewer than 500 values can be
traced.

Example: if 10 WORD variables are traced and if the memory in the PLC is
5000 bytes long, then, for every variable, 250 values can be traced.

In order to be able to perform a trace, open the object for a Sampling Trace
in the Resources register card in the Object Organizer. After this, you must
enter the trace variables to be traced. (See "Extras" "Trace Configuration".)
After you have sent the configuration with "Save Trace to the PLC and have
started the trace in the PLC ("Start Trace"), then the values of the variables will
be traced. With "Read Trace", the final traced values will be read out and
displayed graphically as curves.

"Extras" "Trace Configuration"

With this command you will be given the dialog box for entering the variables to
be traced, as well as diverse trace parameters for the Sampling Trace. The
dialog can also be opened by a double click in the grey area of the dialog
Sampling Trace.

Image 6.19: Dialog Box for Trace Configuration

6-27907 AC 1131/Issued: 10/99 The Resources 5

The list of the Variables to be traced is initially empty. In order to append a
variable the variable must be entered in the field under the list. Following this,
you can use the Add button or the <Enter> to append the variable to the list.
You can also use the Input Assistant.

A variable is deleted from the list when you select the variable and then press
the Delete button.

A Boolean or analogue variable can be entered into the field Trigger Variable.
The input assistance can also be used here. The trigger variable describes the
termination condition of the trace. In Trigger Level you enter the level of an
analogue trigger variable at which the trigger event occurs. When Trigger edge
positive is selected the trigger event occurs after an ascending edge of the
Boolean trigger variable or when an analogue variable has passed through the
trigger level from below to above. Negative causes triggering after a
descending edge or when an analogue variable went from above to below.
Both causes triggering for both descending and ascending edges or by a
positive or negative pass, whereas none does not initiate a triggering event at
all. Trigger Position is used to set the percentage of the measured value which
will be recorded before the trigger event occurs. If, for example, you enter 25
here then 25 % of the measured values are shown before the triggering event
and 75% afterwards and then the trace is terminated. The field Sample Rate is
used set the time period between two recordings in milliseconds. The default
value ”0” means one scanning procedure per cycle.

Select the mode for recalling the recorded values: With Single the Number of
the defined samples are displayed one time. With Continuous the reading of
the recording of the defined number of measured values is initiated anew each
time. If, for example, you enter the number ‘35’ the first display contains the first
measured values 1 to 35 and the recording of the next 35 measured values (36-
70) will then be automatically read, etc.. Manual selection is used to read the
trace recordings specifically with ’Extras‘ ‘Read trace'.

The recall mode functions independently of whether a trigger variable is set or
not. If no trigger variable is set the trace buffer will be filled with the defined
number of measured values and the buffer contents will be read and displayed
on recall.

The button Save is used to store the trace configuration which has been
created in a file. The standard window ”File save as” is opened for this purpose.

Stored trace configurations can be retrieved using the button Load. The
standard window ”File open” is opened for this purpose.

Note: Please note that Save and Load in the configuration dialog only
relates to the configuration, not to the values of a trace recording (in contrast to
the menu commands ‘Extras’ ‘Save trace’ and ‘Extras’ ‘Load trace’).

If the field Trigger Variable is empty, the trace recording will run endlessly and
can be stopped by ’Extras’ ’Stop Trace’.

6-28 907 AC 1131/Issued: 10/99The Resources5

"Extra" "Start Trace"

Symbol:

With this command the trace configuration is transferred to the PLC and the
trace sampling is started in the PLC.

"Extra" "Read Trace"

Symbol:

With this command the present trace buffer is read from the PLC, and the
values of the selected variables are displayed.

"Extra" "Auto Read"

With this command the present trace buffer is read automatically from the PLC,
and the values are continuously displayed.

If the trace buffer is automatically read, then a check (�) is located before the
menu item.

"Extra" "Stop Trace"

Symbol:

This command stops the Sampling Trace in the PLC.

Selection of the Variables to be
Displayed

The comboboxes to the right, next to the window for displaying curves trace
variables defined in the trace configuration. If a variable is selected from the list,
then after the trace buffer has been read the variable will be displayed in the
corresponding color (Var 0 green, etc.). Variables can also be selected if curves
are already displayed.

A maximum of up to eight variables can be observed simultaneously in the trace
window.

6-29907 AC 1131/Issued: 10/99 The Resources 5

Display of the Sampling Trace

Image 6.20: Sampling Trace of Different Variables

If a trace buffer is loaded, then the values of all variables to be displayed will be
read out and displayed. If no scan frequency has been set, then the X axis will
be inscribed with the continuous number of the traced value. The status
indicator of the trace window (first line) indicates whether the trace buffer is full
and when the trace is completed.

If a value for the scan frequency was specified, then the x axis will specify the
time of the traced value. The time is assigned to the "oldest" traced value. In the
example, e.g., the values for the last 25 seconds are indicated.

The Y axis is inscribed with values in the appropriate data type. The scaling is
laid out in a way that allows the lowest and the highest value to fit in the viewing
area. In the example, Var 0 has taken on the lowest value of 6, and the highest
value of 100: hence the setting of the scale at the left edge.

If the trigger requirement is met, then a vertical dotted line is displayed at the
interface between the values before and after the appearance of the trigger
requirement.

A memory that has been read will be preserved until you change the project or
leave the system.

 "Extras" "Cursor Mode"

The easiest way to set a cursor in the monitoring area is to click there with the
left mouse button. A cursor appears and can be moved by the mouse. At the
top of the monitoring window the current x-position of the cursor is displayed. In
the fields next to ’Var 0’, ’Var 1’, ..., ’Var n’ the value of the respective variable is
shown.

Another way is the command ’Extras’ ’Cursor mode’. With this command two
vertical lines will appear in the Sampling Trace. First they are laying one on the
other. One of the lines can be moved to the right or to the left by the arrow keys.

6-30 907 AC 1131/Issued: 10/99The Resources5

By pressing <Ctrl>+<left> or <Ctrl>+<right> the speed of the movement can be
increased by factor 10.

If additionally the <Shift> key is pressed, the second line can be moved,
showing the difference to the first one.

"Extras" "Multi Channel"

With this command you can alternate between single-channel and multi-channel
display of the Sampling Trace. In the event of a multi-channel display, there is a
check (�) in front of the menu item.

The multi-channel display has been preset. Here the display window is divided
into as many as eight display curves. For each curve the maximum and the
minimum value are displayed at the edge.

In a single-channel display, all curves are displayed with the same scaling factor
and are superimposed. This can be useful when displaying curve abnormalities.

‘Extras’ ‘Show grid’

With this command you can switch on and off the grid in the graphic window.
When the grid is switched on, a check (�) will appear next to the menu item.

"Extras" "Y Scaling"

With this command you can change the preset Y scaling of a curve in the trace
display.

In the dialog box specify the number of the desired curve (Channel) and the
new maximum (maximum y scale) and the new minimum value (minimum y
scale) on the y axis.

By doubleclicking on a curve you will also be given the dialog box. The channel
and the former value are preset.

Image 6.21: Dialog Box for Setting the Y Scale

"Extras" "Stretch"

Symbol:

With this command you can stretch (zoom) the values of the Sampling Trace
that are shown. The beginning position is set with the horizontal picture
adjustment bar. With repeated stretches that follow one-after-another, the trace
section displayed in the window will increasingly shrink in size.

6-31907 AC 1131/Issued: 10/99 The Resources 5

This command is the counterpart to "Extras" "Compress".

"Extras" "Compress"

Symbol:

With this command the values shown for the Sampling Trace are compressed;
i.e., after this command you can view the progression of the trace variables
within a larger time frame. A multiple execution of the command is possible.

This command is the counterpart to "Extras" "Stretch".

"Extras" "Save Trace"

With this command you can save a Sampling Trace (values + configuration
data). The dialog box for saving a file is opened. The file name receives the
extension "*.trc".

Be aware, that here you save the traced values as well as the trace
configuration, whereas Save trace in the configuration dialog only concerns the
configuration data.

The saved Sampling Trace can be loaded again with "Extras" "Load Trace".

"Extras" "Load Trace"

With this command a saved Sampling Trace (traced values + configuration
data)can be reloaded. The dialog box for opening a file is opened. Select the
desired file with the "*.trc" extension.

With "Extras" "Save Trace" you can save a Sampling Trace.

"Extras" "Trace in ASCII-file"

With this command you can save a Sampling Trace in an ASCII-file. The dialog
box is opened for saving a file. The file name receives the extension "*.txt". The
values are deposited in the file according to the following scheme:

907 AC 1131 Trace
D:\907 AC 1131 \PROJECTS\TRAFFICSIGNAL.PRO
Cycle PLC_PRG.COUNTER PLC_PRG.LIGHT1
0 2 1
1 2 1
2 2 1
.....

If no frequency scan was set in the trace configuration, then the cycle is located
in the first column; that means one value per cycle has been recorded at any
given time. In the other respects, the entry here is for the point in time in ms at
which the values of the variables have been saved since the Sampling Trace
has been run.

In the subsequent columns, the corresponding values of the trace variables are
saved. At any given time the values are separated from one another by a blank
space.

6-32 907 AC 1131/Issued: 10/99The Resources5

The appertaining variable names are displayed next to one another in the third
line, according to the sequence (PLC_PRG.COUNTER, PLC_PRG.LIGHT1).

6.6 Watch and Receipt Manager

Watch and Receipt Manager

With the help of the Watch and Receipt Manager you can view the values of
selected variables. The Watch and Receipt Manager also makes it possible to
preset the variables with definite values and transfer them as a group to the
PLC ("Write Receipt"). In the same way, current PLC values can be read into
and stored in the Watch and Receipt Manager ("Read Receipt"). These
functions are helpful, for example, for setting and entering of control
parameters.

All watch lists created ("Insert" "New Watch List") are indicated in the left
column of the Watch and Receipt Manager. These lists can be selected with a
mouse click or an arrow key. In the right area of the Watch and Receipt
Manager the variables applicable at any given time are indicated.

In order to work with the Watch and Receipt Manager, open the object for the
Watch and Receipt Manager in the Resources register card in the Object

Organizer.

Watch and Receipt Manager in
the Offline Mode

In Offline Mode, you can create several watch lists in the Watch and Receipt
Manager using the "Insert" "New Watch List".

For inputting the variables to be watched, you can call up a list of all variables
with the Input Assistant, or you can enter the variables with the keyboard,
according to the following notation:

<POUName>.<Variable Name>

With global variables, the POU Name is left out. You begin with a point. The
variable name can, once again, contain multiple levels. Addresses can be
entered directly.

Example of a multiple-level variable:

PLC_PRG.Instance1.Instance2.Structure.Componentname

Example of a global variable:

.global1.component1

6-33907 AC 1131/Issued: 10/99 The Resources 5

Image 6.22: Watch and Receipt Manager in the Offline Mode

The variables in the watch list can be preset with constant values. That means
that in Online mode you can use the "Extras" "Write Receipt" command to
write these values into the variables. To do to do must use := to assign the
constant value of the variable:

Example:

PLC_PRG.TIMER:=50

In the example, the PLC_PRG.COUNTER variable is preset with the value 6

"Insert" "New Watch List"

With this command a new watch list can be inserted into the Watch and Receipt
Manager. Enter the desired name for the watch list in the dialog box that
appears.

"Extras" "Rename Watch List"

With this command you can change the name of a watch list in the Watch and
Receipt Manager.

In the dialog box that appears, enter the new name of the watch list.

"Extras" "Save Watch List"

With this command you can save a watch list. The dialog box for saving a file is
opened. The file name is preset with the name of the watch list and is given the
extension "*.wtc".

The saved watch list can be loaded again with "Extras" "Load Watch List".

"Extras" "Load Watch List"

With this command you can reload a saved watch list. The dialog box is opened
for opening a file. Select the desired file with the "*.wtc" extension. In the dialog
box that appears, you can give the watch list a new name. The file name is
preset without an extension.

With "Extras" "Save Watch List", you can save a watch list.

6-34 907 AC 1131/Issued: 10/99The Resources5

Watch and Receipt Manager in
the Online Mode

In Online mode, the values of the entered variables are indicated.

Structured values (arrays, structures, or instances of function blocks) are
marked by a plus sign in front of the identifier. By clicking the plus sign with the
mouse or by pressing <Enter>, the variable is opened up or closed.

In order to input new variables, you can turn off the display by using the "Extra"
"Active Monitoring" command. After the variables have been entered, you can
use the same command again to activate the display of the values.

Image 6.23: Watch- and Receipt Manager in the Online Mode

In the Offline Mode you can preset variables with constant values (through
inputting := <value> after the variable). In the Online Mode, these values can
now be written into the variables, using the "Extras" "Write Receipt"
command.

With the "Extras" "Read Receipt" command you can replace the presetting of
the variable with the present value of the variable.

Note: Only those values the watch list are loaded which was selected in the
Watch and Receipt Manager!

"Extra" "Monitoring Active"

With this command at the Watch and Receipt Manager in the Online mode, the
display is turned on or off. If the display is active, a check (�) will appear in front
of the menu item.

In order to enter new variables or to preset a value (see Offline Mode), the
display must be turned off through the command. After the variables have been
entered, you can use the same command again to activate the display of the
values.

6-35907 AC 1131/Issued: 10/99 The Resources 5

"Extras" "Write Receipt"

With this command in the Online Mode of the Watch and Receipt Manager, you
can write the preset values (see Offline Mode) into the variables.

"Extras" "Read Receipt"

With the command, in the Online Mode of the Watch and Receipt Manager, you
can replace the presetting of the variables (see Offline Mode) with the present
value of the variables.

Example:

PLC_PRG.Counter [:= <present value>] = <present value>

Force values

In the Watch and Receipt Manager you can also "Force values" and "Write
values". If you click on the respective variable value, then a dialog box opens,
in which you can enter the new value of the variable. Changed variables appear
in red in the Watch and Receipt Manager.

6-36 907 AC 1131/Issued: 10/99The Resources5

7-1907 AC 1131/Issued: 10/99 The Resources 5

7 Library Manager

The library manager shows all libraries that are connected with the current
project. The POUs, data types, and global variables of the libraries can be used
the same way as user-defined POUs, data types, and global variables.

The library manager is opened with the "Window" "Library Manager"
command.

Image 7.1: Library Manager

Using the Library Manager

The window of the library manager is divided into three or four areas by screen
dividers. The libraries attached to the project are listed in the upper left area.

In the area below that, depending on which register card has been selected,
there is a listing of the POUs , Data types, or Global variables of the library
selected in the upper area.

Folders are opened and closed by doubleclicking the line or pressing <Enter>.
There is a plus sign in front of closed folders, and a minus sign in front of
opened folders.

If a POU is selected by clicking the mouse or selecting with the arrow keys then
the declaration of the POU will appear in the upper right area of the library
manager; and in the lower right is the graphic display in the form of a black box
with inputs and outputs.

With data types and global variables, the declaration is displayed in the right
area of the library manager.

7-2 907 AC 1131/Issued: 10/99The Resources5

Standard Library

The library with "standard.lib" is always available. It contains all functions and
function blocks that are required by the IEC1131-3 as standard POUs for an
IEC programming system. The difference between a standard function and an
operator is that the operator is implicitly recognized by the programming
system, while the standard POUs must be tied to the project (standard.lib).

The code for these POUs exists as a C-library and is a component of
907 AC 1131 .

User-defined Libraries

If a project is to be compiled in its entity and without errors, then it can be saved
in a library with the "Save as" command in the "File" menu. The project itself
will remain unchanged. Subsequently, you can gain access to the project under
the entered name, just as with the standard library.

"Insert" "Additional Library"

With this command you can attach an additional library to your project.

In the dialog box for opening a file, choose the desired library with the "*.lib"
extension. The library is now listed in the library manager, and you can use the
objects in the library as user-defined objects.

Remove Library

With the "Edit" "Delete" command you can remove a library from a project and
from the library manager.

8-1907 AC 1131/Issued: 10/99 Visualization 5

8 Visualization

8.1 Create Visualization

Visualization

Visualizations allow you to view your project variables. With the help of the
visualization you can draw geometric elements offline. These can then change
their forms or colors, in subjection to certain variable values, in Online mode.
For example, it possible to display the tendency of a variable to increase in a
bar chart. You can also deal with input for the program by way of the mouse
and the keyboard.

Image 8.1: Example of a Visualization

Create Visualization

In order to create a visualization, you must select the register card for
Visualization in the Object Organizer.

Using the "Project" "Object Add" command, you can create a new
visualization object. A dialog box opens in which you can enter the name of the
new visualization. If you have entered a valid name, then you can close the
dialog box with OK. A window opens in which you can edit the new
visualization.

8-2 907 AC 1131/Issued: 10/99Visualization5

8.2 Visualization Elements, Insert

Visualization Elements, Insert

You can insert four different geometric forms, as well as bitmaps and existing
visualizations, into your visualization.

Geometric forms at your disposal include: rectangles, rounded rectangles,
ellipses/circles, and polygons.

Go to the ’Insert’ menu item and select freely from the following commands:

’Rectangle’, ’Rounded Rectangle’, ’Ellipse’, ’Polygon’,

’Line‘, 'Curve‘, 'Bitmap', 'Visualization' . A check appears in front
of the selected command. You can also use the tool bar. The selected element

appears pushed down (for example).

If you now go to the editor window with the mouse, you will see that the mouse

pointer is identified with the corresponding symbol (for example). Click on
the desired starting point of your element, and drag the pointer, while pressing
the left mouse button, until the element reaches the desired size.

If you want to create a polygon or a line, first click with the mouse on the
position of the first corner of the polygon resp. on the starting point of the line,
and then click on the further desired corner points. By doubleclicking on the last
corner point you will close the polygon and it will be completely drawn
respectively the line will be completed. If you want to create a curve (Bezier
curves) determine the initial and two other points with mouse clicks to define the
circumscribing rectangle. An arc is drawn after the third mouse click. You can
then change the position of the end point of the arc by moving the mouse and
can then end the process with a double click or add another arc with additional
mouse clicks.

Furthermore pay attention, to the status bar and the change from select and
insert modes.

"Insert" "Rectangle"

Symbol:

With the command you can insert a rectangle as an element into your present
visualization. (Use, see Visualization Elements, Insert)

"Insert" "Rounded Rectangle"

Symbol:

With the command you can insert a rectangle with rounded corners as an
element in your present visualization. (Use, Visualization Elements, Insert)

8-3907 AC 1131/Issued: 10/99 Visualization 5

"Insert" "Ellipse"

Symbol:

With the command you can insert a circle or an ellipse as an element in your
present visualization. (Use, see Visualization Elements, Insert)

"Insert" "Polygon"

Symbol:

With the command you can insert a polygon as an element in your present
visualization. (Use, see Visualization Elements, Insert).

"Insert" "Line"

Symbol:

With the command you can insert a line as an element into your current
visualization. (Use, see Visualization Elements, Insert).

‘Insert’ ‘Curve’

Symbol:

With the command you can insert a Bezier curve as an element into your
current visualization. (Use, see Visualization Elements, Insert)..

"Insert" "Bitmap"

Symbol:

With the command you can insert a bitmap as an element in your present
visualization. (Use, see Visualization Elements, Insert)

While pressing the left mouse button, bring up an area in the desired size. The
dialog box is opened for opening a file. Once you have selected the desired
bitmap, it will be inserted into the area brought up.

"Insert" "Visualization"

Symbol:

With the command you can insert an existing visualization as an element in
your present visualization. (Use, see Visualization Elements, Insert)

While pressing the left mouse button, bring up an area in the desired size. A
selection list of existing visualizations opens. After you have selected the
desired visualization, it will be inserted in the defined area.

8-4 907 AC 1131/Issued: 10/99Visualization5

8.3 Working with Visualization Elements

Selecting Visualization
Elements

In order to select an element, click with the mouse on the element. You can also
select the first element of the elements list by pressing the <Tab> key and jump
to the next by each further keystroke. If you press the <Tab> key while pressing
the <Shift> key, you jump backwards in the order of the elements list.In order to
mark multiple elements, press and hold the <Shift> key and click the
corresponding elements, one after another; or, while holding down the left
mouse button, pull a window over the elements to be selected.

In order to select all the elements, use the "Extras" "Select All" command.

Modifying Visualization
Elements

You can select an element which has already been inserted by a mouse click
on the element or by pressing the <tab> key. A small black square will appear
at each corner of each of the elements, (with ellipses at the corners of the
surrounding rectangle). Except in the case of polygons, lines or curves further
squares appear in the middle of the element edges between the corner points.

With a selected element, the turning point (balance point) is also displayed at
the same time. You can then rotate the element around this point with a set
motion/angle. The turning point is displayed as a small black circle with a white
cross (). You can drag the turning point with a pressed left mouse button.

You can change the size of the element by clicking on one of the black squares
and, while keeping the left mouse button pressed, controlling the new outline.

With the selection of a polygon, you can drag each individual corner using the
same technique. While doing this, if you press the <Ctrl>-key then an additional
corner point will be inserted at the corner point, an additional corner point will be
inserted, which can be dragged by moving the mouse. By pressing the
<Shift>+<Ctrl>-key, you can remove a corner point.

Dragging Visualization
Elements

One or more selected elements can be dragged by pressing the left mouse
button or the arrow key.

Copying Visual Elements

One or more selected elements can be inserted with the "Edit"
"Copy"command, the <Ctrl>+<C> key combination, or the corresponding copy
symbol, and with "Edit" "Paste".

8-5907 AC 1131/Issued: 10/99 Visualization 5

A further possibility is to select the elements and then click the mouse in an
element once again, while pressing the <Ctrl>-key. Now you can remove the
newly copied elements from the original ones while pressing the left mouse
button.

Changing the Selection and
Insert Mode

After the insertion of a visualization element, there is an automatic change back
into the selection mode. If you want to insert an additional element the same
way, you can once again select the corresponding command in the menu or the

symbol in the tool bar.

You can also quickly change between the selection mode and the insert mode
by pressing the <Ctrl>-key and the right mouse button simultaneously.

In the insert mode, the corresponding symbol will also appear at the mouse
pointer, and the name will also be indicated in black in the status bar.

Status Bar in the Visualization

In a visualization, the present X and Y position of the mouse pointer is
displayed in the status bar. The position values are always relative to the upper
left corner of the picture in the status bar. If the mouse pointer is located on an
Element, or if the element is being processed, then the number of the element
will be displayed. If you have selected an element to insert, then this element
will also appear (for example, Rectangle).

8.4 Visualization Elements, Configure

"Extras" "Configure"

With this command you can open the dialog box to configure the selected
visualization element.

You are given the dialog box for configuration when you doubleclick on the
element.

Select a category in the left area of the dialog box, and fill out the requested
information in the right area.

Depending on the visualization element selected, various categories can be
selected:

• Shape Rectangle, Rounded Rectangle, Ellipse
• Text All
• Color Rectangle, Rounded Rectangle, Ellipse,

Polygon, Line, Curve
• Motion absolute All
• Motion relative All, except Polygon, Line, Curve
• Variables All
• Input All

8-6 907 AC 1131/Issued: 10/99Visualization5

• Tooltip All
• Bitmap Bitmap
• Visualization Visualization

Shape

In the visualization element configuration dialog box, you can select in the
Shape category from among Rectangle, Rounded Rectangle, and Ellipse
respectively Polygon, Line and Curve. The form will change into the size
already set.

Image 8.2: Dialog Box for Configuring Visualization Elements (Shape Category)

Text

In the visualization element configuration dialog box, in the Text category you
can set a text for the element.

Enter the text in the Content field. By pressilng <Ctrl>+<Enter> you can insert
line breaks.

If you enter "%s" into the text, then this location, in Online mode, will be
replaced by the value of the variable from the Text Output field of the
Variables category.

This text will appear in the element, according to the respective Horizontal
Left, Center, or Right positioning, and the respective Top , Center, or Bottom
positioning, that was specified in the element.

If you use the Font button, a dialog box for selection of the font will appear.
Select the desired font and confirm the dialog with OK. With the Standard Font
button you can set the font that is selected below in the "Project" "Options". If
the font is changed there, then this font will be displayed in all elements except
in those elements for which another font has explicitly been selected by using
the Font button.

8-7907 AC 1131/Issued: 10/99 Visualization 5

Image 8.3: Dialog Box for Configuring Visualization Elements (Text Category)

Colors

In the visualization element configuration dialog box, in the Color category you
can select primary colors and alarm colors for the inside area and for the frame
of your element. Chosing the options no color inside and no frame color you
can create transparent elements.

Image 8.4: Dialog Box for Configuring Visualization Elements (Color Category)

If you now enter a Boolean variable in the Variables category in the Change
Color field, then the element will be displayed in the Color set, as long as the
variable is FALSE. If the variable is TRUE, then the element will be displayed in
its Alarm Color.

Note: The change color function only becomes active, if the PLC is in
Online Mode!

If you want to change the color of the frame, then press the Frame button,
instead of the Inside button. In either case, the dialog box will open for selection
of the color.

8-8 907 AC 1131/Issued: 10/99Visualization5

Here can to choose the desired hue from the primary colors and the user-
defined colors. By pressing the Define Colors you can change the user-defined
colors.

Motion absolute

In the visualization element configuration dialog box, in the Motion absolute
category, X- or Y-Offset fields variables can be entered. These variables can
shift the element in the X or the Y direction, depending on the respective
variable value. A variable in the Scale field changes the size of the element
linear to the value of the variable.

A variable in the Angle field causes the element to turn on its turning point,
depending on the value of the variable. (Positive Value = Mathematic Positive =
Clockwise). The value is evaluated in degrees. With polygons, every point
rotates; in other words, the polygon turns. With all other elements, the element
rotates, in such a way, that the upper edge always remains on top.

The turning point appears after a single click on the element, and is displayed
as a small black circle with a white cross (). You can drag the turning point
with a pressed left mouse button.

Image 8.5: Visualization Element Configuration Dialog Box (Motion Absolute Category)

Motion relative

In the dialog for configuring visualization elements in the Motion Relative
category, you can assign variables to the individual element edges. Depending
on the values of the variables, the corresponding element edges are then
moved. The easiest way to enter variables into the fields is the Input Assistant.

The four entries indicate the four sides of your element. The base position of the
corners is always at zero. A new value in the variables, in the corresponding
column, shifts the boundary in pixels around this value. Therefore, the variables
that are entered ought to be INT variables.

Note: Positive values shift the horizontal edges downward, or, the vertical
edges, to the right!

8-9907 AC 1131/Issued: 10/99 Visualization 5

Image 8.6: Dialog Box for Configuration of Visualization Elements (Motion Relative
Category)

Variables

You can enter the variables that describe the status of the visualization
elements in the Variable category within the dialog box for configuring
visualization elements. The simplest way to enter variables in the fields is to use
the Input Assistant.

You can enter Boolean variables in the Invisible and Change color fields. The
values in the fields determine their actions. If the variable of the Invisible field
contains the value FALSE, the visualization element will be visible. If the
variable contains the value TRUE, the element will be invisible.

If the variable at the Change color field contains the value FALSE, the
visualization element will be displayed in its default color. If the variable is
TRUE, the element will be displayed in its alarm color.

You can enter a variable in the Textdisplay field whose value is displayed if
you have , in addition to the text, inserted %s in the Content field of the Text
category. In Online mode, "%s" is replaced by the value of the variables found
in Textdisplay.

Image 8.7: Visualization Element Configuration Dialog Box (Variables Category)

8-10 907 AC 1131/Issued: 10/99Visualization5

Input

Selecting the field Toggle variable allows you, in online mode, to toggle the
value of the variables which are located in the input field with every mouse click
on the element. The value of the Boolean variable changes with each mouse
click from TRUE to FALSE and then back to TRUE again at the next mouse
click, etc.

The option Keying variable allows you, in online mode, to change the value of
the Boolean variable which is located in the input field, between TRUE and
FALSE. Place the mouse cursor on the element, press the mousekey and hold
it depressed (the value will, for example, change from TRUE to FALSE). The
variable changes back to its initial value (TRUE) as soon as you release the
mousekey.

Selecting the field Zoom to Vis... allows you, in the following field, to enter the
name of a visualization object in the same project. While in online mode use a
mouse click to change to the element in the window of the visualization which
has been entered. If a program variable of the type STRING (e.g.
PLC_PRG.xxx) has been entered, instead of a visualization object, then this
variable can be used to define the name of the visualization object (e.g. ,visu1’)
which the system should change to when a mouse click occurs (e.g. xxx:=
,visu1).

The field Zoom to Vis... can be used to configure the return to the calling
visualization by using the command ‚ZOOMTOCALLER‘.

Selecting the option Execute program allows you to enter any executable
program in the input field and then to execute it in online mode by clicking on
the element with the mouse.

Note: The configuration field Execute program plays a major role for the
907 AC 1131 operating version, since 907 AC 1131 program actions can be
initiated here over defined commands, which are available as menu commands
in the full version (see 'Special input possibilities for the 907 AC 1131 operating
version').

Selecting the option Text input of the variable ‘Text output’ allows you, in
online mode, to allocate a value to a variable over this visualization element.
The value which is located in the field Text output of the category Variables
will be written in the variable. Clicking in online mode on the element produces
an editing frame in which you can enter the new value of the variable over the
keyboard. Press the <Enter> key to accept the value.

8-11907 AC 1131/Issued: 10/99 Visualization 5

Image 8.8: Dialog to configure the visualization elements (Category Input)

Special input possibilities for
the 907 AC 1131 operating
version

In the operating version of 907 AC 1131 there are no menus and status and
tool bars available to the user. The most important control and monitoring
functions can, however, be attached to a visualization element and thus be
available through a mouse click or over the keyboard. The following special
input possibilities are available in the configuration dialog for a visualization
element:

Enter internal commands in the field Execute program in the category Input
according to the following syntax:

INTERN <COMMAND> [PARAMETER]*

The following internal commands which can accommodate a number of
parameters separated by the <space bar> are presently available:

Command The equivalent in
the full version
of 907 AC 1131

Explanation

LANGUAGE <visualization
settings>

The dialog for visualization
settings which includes the
category language gets openend.

LANGUAGE
<sprache>

<visualization
settings>

The desired language file is
chosen without using the dialog
for visualization settings.

DEFINERECEIPT
name

<Select watch lists> A watch list is selected from the
receipt manager which enters
your name (name) when the

8-12 907 AC 1131/Issued: 10/99Visualization5

command is given. The variables
in this watch list are registered
and displayed.

WRITERECEIPT
name

‘Write receipts' The name of a watch list of the
receipt manager is expected. The
receipt of this watch list will be
written. A previous execution of
DEFINERECEIPT is not
necessary.

SAVEWATCH ‘Save watch list' The receipt will be read into the
current watch list which will be
stored in a file. Important: call a
previous DEFINERECEIPT to
define the current receipt !

LOADWATCH ‘Load watch list' +
‘Write receipt'

The standard window ‚File open‘
appears, from which a previously
stored receipt can be selected.
This receipt will be immediately
written into the controller system.

EXITPROGRAM ‚File‘ ‘Close' The program will be exited.

PRINT ‚File‘ ‘Print' The current visualization will be
printed out online.

TRACE <Open object trace
recording>

The window for trace recording
will be opened.

The menu commands Trace
Start, Read, Stop, Save, Load
which are available in the full
version of 907 AC 1131 are
available in this window.

8-13907 AC 1131/Issued: 10/99 Visualization 5

Image 8.9: Dialog for the trace recording in the operation version

ToolTip

The dialog Text for Tooltip offers an input field for text which appears in a text
field as soon as the mouse cursor is passed over the object in online mode. The
text can be formatted with line breaks by using the key combination <Ctrl> +
<Enter>.

Bitmap

You can enter the options for a bitmap in the Bitmap category within the
visualization element configuration dialog box.

Enter the bitmap file and its path in the Bitmap field. You can use the ... button
to open the standard Windows Browse dialog box from which you can select the
desired bitmap.

All other entries affect the frame of the bitmap.

By selecting Anisotropic, Isotropic or Fixed you specify how the bitmap
should react to changes in the size of the frame. Anisotropic means that the
bitmap remains the same size as the frame which allows you to change the
height and width of the bitmap independently. Isotropic means that the bitmap
retains the same proportions even if the overall size is changed (i.e., the
relationship between height and width is maintained). If Fixed is selected, the
original size of the bitmap will be maintained regardless of the size of the frame.

If the Clip option is selected together with the Fixed setting, only that portion of
the bitmap that is contained within the frame will be displayed.

If you select the Draw option, the frame will be displayed in the color selected in
the Color and Alarm color buttons in the color dialog boxes. The alarm color
will only be used if the variable in the Change Color field in the Variable
category is TRUE.

8-14 907 AC 1131/Issued: 10/99Visualization5

Image 8.10: Visualization Element Configuration Dialog Box (Bitmap Category)

Visualization

You can enter the options for a visualization as an element in another
visualization in the Visualization category within the visualization element
configuration dialog box. Enter the object name for the visualization in the
Visualization field. Use the ... button to open a dialog box containing the
visualizations available in this project. Any visualization may be used with the
exception of the current one.

All other entries affect the visualization frame.

If you select the Draw option, the frame will be displayed in the color selected in
the Color and Alarm color buttons in the color dialog boxes. The alarm color
will only be used if the variable in the Change Color field in the Variables
category is TRUE.

If Isotropic is selected, the proportions of the visualization will be maintained
even if the size changes (i.e., the relationship between height and width will
remain the same). Otherwise the proportions can be changed.

If the Clip option is selected in Online mode, only the original portion of the
visualization will be displayed. For example, if an object extends beyond the
original display area, it will be clipped and may disappear from view completely
in the visualization.

8-15907 AC 1131/Issued: 10/99 Visualization 5

Image 8.11: Visualization Element Configuration Dialog Box (Visualization Category)

8.5 Additional Visualization Element Functions

"Extras" "Send to Front"

Use this command to bring selected visualization elements to the front.

"Extras" "Send to Back"

Use this command to send selected visualization elements to the back.

"Extras" "Select Background
Bitmap"

Use this command to open the dialog box for selecting files. Select a file with
the extension "*.bmp". The selected bitmap will then appear as the background
in your visualization.

The bitmap can be removed with the command "Extras" "Clear Background
Bitmap".

"Extras" "Clear Background
Bitmap"

Use this command to remove the bitmap as the background for the current
visualization.

You can use the command "Extras" "Select Background Bitmap" to select a
bitmap for the current visualization.

"Extras" "Align"

Use this command to align selected visualization elements.

The following alignment options are available:

• Left: the left edge of each of the elements will be aligned to the element
that is furthest to the left

• the same is true for Right / Top / Bottom
• Horizontal Center: each of the elements will be aligned to the

average horizontal center of all elements
• Vertical Center: each of the elements will be aligned to the average

vertical center of all elements

"Extras" "Select All"

This command allows you to select all visualization elements within the current
visualization object.

8-16 907 AC 1131/Issued: 10/99Visualization5

‘Extras’ ‘Select Mode’

This command is used to switch the selection mode on or off. This can also be

achieved using the symbol or by pressing the right mousekey while holding
down the <Ctrl> key at the same time.

"Extras" "Element list"

This command opens a dialog box containing a list of all visualization elements
including their number, type and position. The position is given according to
the x and y position of the upper left and lower right corner of the element.

When one or more items have been selected, the corresponding elements in
the visualization are marked for visual control and if necessary the display will
scroll to that section of the visualization that contains the elements.

Use the To front button to bring selected visualization elements to the front.
Use the To behind button to move them to the back.

Use the Delete button to remove selected visualization elements.

Use the Undo and Redo buttons to undo or restore changes that have been
made just as you would do with the commands "Edit" "Undo" and "Edit"
"Redo" . In the dialog box, you can observe the changes that are being made.

Click on OK to close the dialog box and confirm the changes.

Image 8.12: Element list dialog box

"Extras" "Settings"

When this command is used, a dialog box will open in which you can make
certain settings that affect the visualization.

8-17907 AC 1131/Issued: 10/99 Visualization 5

Note: The categories Display, Frame and Language also can be edited in
the online mode.

Enter a zoom factor into the field Zoom in the category Presentation of
between 10 and 500 % in order to increase or decrease the size of the
visualization display. Selecting Element numbers shows the numbers of the
elements in each visualization element when in offline mode.

If Auto-scrolling is selected in the Frame category, the visible portion of the
visualization window will move automatically when you reach the edge while
drawing or moving a visualization element If Best fit in Online mode is
selected, the entire visualization including all elements will be shown in the
window in Online mode regardless of the size of the window. When Include
Background Bitmap is selected, the background bitmap will be fitted into the
window as well, otherwise only the elements will be considered.

The category Grid is used to define whether the grid points are visible in the
offline mode, whereby the spacing between the visible points is at least 10 even
if the entered size is smaller than that. In this case the grid points only appear
with a spacing which is a multiple of the entered size. Selecting Active causes
the elements to be placed on the snap grid points when they are drawn and
moved. The spacing of the grid points is set in the field Size.

Image 8.13: Setting dialog for visualizations (Category Presentation)

The category Language is used to display the text which has been assigned to
the visualization elements using the options Text and Text for Tooltip in a
desired language. You have to prepare a language file as described in the
following:

Choose option language file. In the associate input field you give in where you
want to store the file. The extension is ’.vis’. You also can use the dialog ’Open’

by pressing the button . If a language file is available already, it will be
offered here.

In the input field next to Language you fill in a keyword for the language, which
is currently used in the visualization, i.e. "german" (or "D"). Then press the

8-18 907 AC 1131/Issued: 10/99Visualization5

button Save. A file with the extension .vis is created, which now can be edited
by a normal text editor. For example you can open the file by notepad:

Bild 8.14: Example of a language file for a visulisation (Category Language)

You get a list of the text variables for the language currently used in the
visualization. It includes a reference to the title of this list, for example
"1=german" as reference to the title [german]. You can extend the list by
copying all lines, then replacing the German by English text and setting a new
title [english]. Beyond the line 1=german you accordingly have to add 2=english.

To view the visualization in one of the prepared languages, open the dialog
Language again. In the option field beyond Language now you can choose
between german and english (for the example described above).

Note: The text display does not change before switching to Online Mode !

Bild 8.15: Selection of a language file for a visualization

8-19907 AC 1131/Issued: 10/99 Visualization 5

Operation over the keyboard -
in online mode

The visualization elements can be manipulated in online mode over the
following key functions:

Pressing the <Tabulator> key selects the first element in the element list for
which an input is configured. Each subsequent pressing of the key moves one
to the next element in the list. Pressing the key while keeping the <Shift> key
depressed selects the previous element.

The arrow keys can be used to change from a selected element to a
neighbouring one in any direction.

The <Space bar> is used to execute an activity on the selected visualization
element. If the element is one which has a text output variable, a text input field
will be opened which displays the text contents of the variable. Pressing the
<Enter> key writes in this value.

Note: Operation over the keyboard in online mode is of greatest
significance for the operation version of 907 AC 1131 !

‚File‘ ‚Print‘ in online mode

‘File‘ ‘Print‘ is used to print out the contents of the visualization window in online
mode. Visualizations which stretch over the border of the window can lead to
inconsistencies particularly when there are moving elements in the visualization.

8-20 907 AC 1131/Issued: 10/99Visualization5

9-1907 AC 1131/Issued: 10/99 DDE-Interface 5

9 DDE Interface

907 AC 1131 has a DDE (dynamic data exchange) interface for reading data.
907 AC 1131 uses this interface to provide other applications that also use a
DDE Interface with the contents of control variables and IEC addresses.

Activating the DDE Interface

The DDE interface becomes active as soon as the PLC (or the simulation) is
logged in.

General Approach to Data

A DDE inquiry can be divided into three parts:

1. Name of the program (here: AC1131),
2. File name and
3. Variable name to be read.

Name of the program: AC1131

File name: complete project path (c:\example\example.pro).

Variable name: The name of a variable as it appears in the Watch and Receipt
Manager .

Which variables can be read?

All addresses and variables with the exception of global variables are readable.
Variables or addresses should be entered in the format used in the Watch and
Receipt Manager.

Examples:

%IX1.4.1 (* Reads the input 1.4.1*)
PLC_PRG.TES
T

(* Reads the variable TEST from the POU
PLC_PRG*)

Linking variables using WORD

In order to get the current value of the variable TEST from the POU PLC_PRG
through the DDE interface in Microsoft WORD, a field (e.g., the date) must be
inserted in WORD ("Insert" "Field"). Now when you click on the field with the
right mouse button and select the command "Toggle Field Codes" you can
change the field function for the chosen text. In our example, this would look as
follows:

{ DDEAUTO AC1131 "C:\\AC1131\\PROJECT\\IFMBSP.PRO"
"PLC_PRG.TEST" }

Click on the field with the right mouse button again, then click on "Update Field"
and the desired variable content appears in the text.

9-2 907 AC 1131/Issued: 10/99DDE-Interface5

Linking variables using EXCEL

The following must be entered in Microsoft EXCEL before you can assign a
variable to a cell. Do not use any special characters in the name of the
variable !

=’AC1131’|’C:\AC1131\PROJECT\IFMBSP.PRO’!’PLC_PRG.TEST’’

When you click on "Edit" "Links", the result for this link will be:

Type: AC1131
Source file: C:\AC1131\PROJECT\IFMBSP.PRO
Element: PLC_PRG.TEST

Accessing variables with
Intouch

Link with your project a DDE Access Name <AccessName> with the application
name 907 AC 1131 and the DDE topic name C:\AC1131
\PROJECT\IFMBSP.PRO. Now you can associate DDE type variables with the
access name <AccessName>. Enter the name of the variable as the Item Name
(e.g., PLC_PRG.TEST).DDE-Schnittstelle

10-1907 AC 1131/Issued: 10/99 Use of Keyboard 5

10 Appendix

Appendix A: Use of Keyboard

If you would like to run 907 AC 1131 using only the keyboard, you will find it
necessary to use a few commands that are not found in the menu.

• The function key <F6> allows you to toggle back and forth within the open
POU between the Declaration and the Instruction parts.

• <Alt>+<F6> allows you to move from an open object to the Object Organizer
and from there to the Message window if it is open. If a Search box is open,
<Alt>+<F6> allows you to switch from Object Organizer to the Search box
and from the there back to the object.

• Press <Tab> to move through the input fields and buttons in the dialog
boxes.

• The arrow keys allow you to move through the register cards and objects
within the Object Organizer and Library Manager.

All other actions can be performed using the menu commands or with the
shortcuts listed after the menu commands. <Shift>+<F10> opens the context
menu which contains the commands most frequently used for the selected
object or for the active editor.

Key Combinations

The following is an overview of all key combinations and function keys:

General Functions

Move between the declaration part and the
instruction part of a POU

<F6>

Move between the Object Organizer, the
object and the message window

<Alt>+<F6>

Context Menu <Shift>+<F10>

Shortcut mode for declarations <Ctrl>+<Enter>

Move from a message in the Message window
back to the original position in the editor

<Enter>

Open and close multi-layered variables <Enter>

Open and close folders <Enter>

Switch register cards in the Object Organizer
and the Library Manager

<Arrow keys>

10-2 907 AC 1131/Issued: 10/99Use of Keyboard5

Move to the next field within a dialog box <Tab>

Context sensitive Help <F1>

General Commands

"File" "Save" <Ctrl>+<S>

"File" "Print" <Ctrl>+<P>

"File" "Exit" <Alt>+<F4>

"Project" "Check" <Strg>+<F11>

"Project" "Build" <Umschalt>+<F11>

"Project" "Rebuild all" <F11>

"Project" "Delete Object"

"Project" "Add Object" <Ins>

"Project" "Rename Object" <Spacebar>

"Project" "Open Object" <Enter>

"Edit" "Undo" <Ctrl>+<Z>

"Edit" "Redo" <Ctrl>+<Y>

"Edit" "Cut" <Ctrl>+<X> or
<Shift>+

"Edit" "Copy" <Ctrl>+<C>

"Edit" "Paste" <Ctrl>+<V>

"Edit" "Delete"

"Edit" "Find next" <F3>

"Edit" "Input Assistant" <F2>

"Edit" "Next Error" <F4>

"Edit" "Previous Error" <Shift>+<F4>

"Online" "Run" <F5>

"Online" "Toggle Breakpoint" <F9>

"Online" "Step over" <F10>

10-3907 AC 1131/Issued: 10/99 Use of Keyboard 5

"Online" "Step in" <F8>

"Online" "Single Cycle" <Ctrl>+<F5>

"Online" "Write Values" <Ctrl>+<F7>

"Online" "Force Values" <F7>

"Online" "Release Force" <Shift>+<F7>

"Window" "Messages" <Shift>+<Esc>

FBD Editor Commands

"Insert" "Network (after)" <Shift>+<T>

"Insert" "Assignment" <Ctrl>+<A>

"Insert" "Jump" <Ctrl>+<L>

"Insert" "Return" <Ctrl>+<R>

"Insert" "Operator" <Ctrl>+<O>

"Insert" "Function" <Ctrl>+<F>

"Insert" "Function Block" <Ctrl>+

"Insert" "Input" <Ctrl>+<U>

"Extras" "Negate" <Ctrl>+<N>

"Extras" "Zoom" <Alt>+<Enter>

LD Editor Commands

"Insert" "Network (after)" <Shift>+<T>

"Insert" "Contact" <Ctrl>+<O>

"Insert" "Parallel Contact" <Ctrl>+<R>

"Insert" "Function Block" <Ctrl>+

"Insert" "Coil" <Ctrl>+<L>

"Extras" Paste below" <Ctrl>+<U>

"Extras" "Negate" <Ctrl>+<N>

10-4 907 AC 1131/Issued: 10/99Use of Keyboard5

SFC Editor Commands

"Insert" "Step-Transition (before)" <Ctrl>+<T>

"Insert" "Step-Transition (after)" <Ctrl>+<E>

"Insert" "Alternative Branch (right)" <Ctrl>+<A>

"Insert" "Parallel Branch (right)" <Ctrl>+<L>

"Insert" "Jump"(SFC) <Ctrl>+<U>

"Extras" "Zoom Action/Transition" <Alt>+<Enter>

Move back to the editor from the SFC
Overview

<Enter>

Work with the PLC Configuration

Open and close organization elements <Enter>

Place an edit control box around the name <Spacebar>

"Extras" "Edit Entry" <Enter>

Work with the Task Configuration

Place an edit control box around the task or
program name

<Spacebar>

10-5907 AC 1131/Issued: 10/99 Data Types 5

Appendix B: Data types

You can use standard data types and user-defined data types when
programming. Each identifier is assigned to a data type which dictates how
much memory space will be reserved and what type of values it stores.

Standard Data types

 BOOL

BOOL type variables may be given the values TRUE and FALSE. 8 bits of
memory space will be reserved.

 Integer Data Types

BYTE, WORD, DWORD, SINT, USINT, INT, UINT, DINT, and UDINT are all
integer data types

Each of the different number types covers a different range of values. The
following range limitations apply to the integer data types:

Type Lower limit Upper limit Memory
space

BYTE 0 255 8 Bit

WORD 0 65535 16 Bit

DWORD 0 4294967295 32 Bit

SINT: -128 127 8 Bit

USINT: 0 255 8 Bit

INT: -32768 32767 16 Bit

UINT: 0 65535 16 Bit

DINT: -2147483648 2147483647 32 Bit

UDINT: 0 4294967295 32 Bit

As a result when larger types are converted to smaller types, information may
be lost.

 REAL / LREAL

REAL and LREAL are so-called floating-point types. They are required to
represent rational numbers. 32 bits of memory space is reserved for REAL and
64 bits for LREAL.

10-6 907 AC 1131/Issued: 10/99Data Types5

 STRING

A STRING type variable can contain any string of characters. The size entry in
the declaration determines how much memory space should be reserved for the
variable. It refers to the number of characters in the string and can be placed in
parentheses or square brackets. If no size specification is given, the default size
of 80 characters will be used.

Example of a String Declaration with 35 characters:

str:STRING(35):=’This is a String’;

 Time Data Types

The data types TIME, TIME_OF_DAY (abb. TOD), DATE and
DATE_AND_TIME (abb. DT) are handled internally like DWORD.

Time is given in milliseconds in TIME and TOD, time in TOD begins at 12:00
A.M.

Time is given in seconds in DATE and DT beginning with January 1, 1970 at
12:00 A.M.

The time data formats used to assign values are described in the chapter on
Constants.

Defined Data Types

 ARRAY

One-, two-, and three-dimensional fields (arrays) are supported as elementary
data types. Arrays can be defined both in the declaration part of a POU and in
the global variable lists.

Syntax:

<Field_Name>:ARRAY [<ll1>..<ul1>,<ll2>..<ul2>] OF <elem. Type>.

ll1, ll2, ll3identify the lower limit of the field range; ul1, ul2 and ul3 identify the
upper limit. The range values must be integers.

Example:

Card_game: ARRAY [1..13, 1..4] OF INT;

Initializing Arrays:

You can initialize either all of the elements in an array or none of them.

Example for initializing arrays:

arr1 : ARRAY [1..5] OF INT := 1,2,3,4,5;
arr2 : ARRAY [1..2,3..4] OF INT := 1,3(7);

(* short for 1,7,7,7 *)
arr3 : ARRAY [1..2,2..3,3..4] OF INT := 2(0),4(4),2,3;

(* short for 0,0,4,4,4,4,2,3 *)

Array components are accessed in a two-dimensional array using the following
syntax:

10-7907 AC 1131/Issued: 10/99 Data Types 5

<Field_Name>[Index1,Index2]

Example:

Card_game [9,2]

Note: If you define a function in your project with the name CheckBounds,
you can use it to check for range overflows in your project (see chapter ’What is
what in 907 AC 1131 ’, ’Components of a project’, ’Function’)

 Pointer

Variable or function block addresses are saved in pointers while a program is
running.

Pointer declarations have the following syntax:

<Identifier>: POINTER TO <Datatype/Functionblock>;

A pointer can point to any data type or function block even to user-defined
types.

The function of the Address Operator ADR is to assign the address of a variable
or function block to the pointer.

A pointer can be dereferenced by adding the content operator "^" after the
pointer identifier.

Example:

pt:POINTER TO INT;
var_int1:INT := 5;
var_int2:INT;
pt := ADR(var_int1);
var_int2:= pt^; (* var_int2 is now 5 *)

 Enumeration

Enumeration is a user-defined data type that is made up of a number of string
constants. These constants are referred to as enumeration values.

Enumeration values are recognized in all areas of the project even if they were
locally declared within a POU. It is best to create your enumerations as

objects in the Object Organizer under the register card Data types. They
begin with the keyword TYPE and end with END_TYPE.

Syntax:

TYPE <Identifier>:(<Enum_0> ,<Enum_1>, ...,<Enum_n>);
END_TYPE

A variable of the type <Identifier> can take on one of the enumeration values
and will be initialized with the first one. These values are compatible with whole
numbers which means that you can perform operations with them just as you
would with INT. You can assign a number x to the variable. If the enumeration
values are not initialized, counting will begin with 0. When initializing, make

10-8 907 AC 1131/Issued: 10/99Data Types5

certain the initial values are increasing. The validity of the number will be
reviewed at the time it is run.

Example:

TYPE TRAFFIC_SIGNAL: (Red, Yellow, Green:=10); (*The initial value for
each of the colors is red 0, yellow 1, green 10 *)

END_TYPE
TRAFFIC_SIGNAL1 : TRAFFIC_SIGNAL;
TRAFFIC_SIGNAL1:=0; (* The value of the traffic signal is red*)
FOR i:= Red TO Green DO

i := i + 1;
END_FOR;

You may not use the same enumeration value more than once.

Example:

TRAFFIC_SIGNAL: (red, yellow, green);
COLOR: (blue, white, red);
Error: red may not be used for both TRAFFIC_SIGNAL and COLOR.

 Structures

Structures are created as objects in the Object Organizer under the register
card Data types. They begin with the keywords TYPE and STRUCT and end
with END_STRUCT and END_TYPE.

The syntax for structure declarations is as follows:

TYPE <Structurename>:
STRUCT

<Declaration of Variables 1>
.
.
<Declaration of Variables n>

END_STRUCT
END_TYPE

<Structurename> is a type that is recognized throughout the project and can be
used like a standard data type.

Interlocking structures are allowed. The only restriction is that variables may not
be placed at addresses (the AT declaration is not allowed!).

Example for a structure definition named Polygonline:

TYPE Polygonline:
STRUCT

Start:ARRAY [1..2] OF INT;
Point1:ARRAY [1..2] OF INT;
Point2:ARRAY [1..2] OF INT;
Point3:ARRAY [1..2] OF INT;
Point4:ARRAY [1..2] OF INT;
End:ARRAY [1..2] OF INT;

END_STRUCT
END_TYPE

10-9907 AC 1131/Issued: 10/99 Data Types 5

Example for the initialization of a structure:

Poly_1:polygonline := (Start:=3,3, Point1 =5,2, Point2:=7,3, Point3:=8,5,
Point4:=5,7, End := 3,5);

You can gain access to structure components using the following syntax:

<Structure_Name>.<Componentname>

For example, if you have a structure named "Week" that contains a component
named "Monday", you can get to it by doing the following:

Week.Monday

 References

You can use the user-defined reference data type to create an alternative name
for a variable, constant or function block.

Create your references as objects in the Object Organizer under the register
card Data types. They begin with the keyword TYPE and end with
END_TYPE.

Syntax:

TYPE <Identifier>: <Assignment term>;
END_TYPE

Example:

TYPE message:STRING[50];
END_TYPE;

10-10 907 AC 1131/Issued: 10/99Data Types5

10-11907 AC 1131/Issued: 10/99 Operands in 907 AC 1131 5

Appendix C: IEC Operators

907 AC 1131 supports all IEC operators. In contrast with the standard
functions, these operators are recognized implicitly throughout the project.
Operators are used like functions in POU implemArithmetic Operators

 ADD

Addition of variables of the types: BYTE, WORD, DWORD, SINT, USINT, INT,
UINT, DINT, UDINT, REAL and LREAL.

Two TIME variables can also be added together resulting in another time
(e.g., t#45s + t#50s = t#1m35s)

Example in IL:

 LD 7

 ADD 2,4,7

 ST Var 1

Example in ST:

var1 := 7+2+4+7;

Example in FBD:

 MUL

Multiplication of variables of the types: BYTE, WORD, DWORD, SINT, USINT,
INT, UINT, DINT, UDINT, REAL and LREAL.

Example in IL:

 LD 7

 MUL 2,4,7

 ST Var 1

Example in ST:

var1 := 7*2*4*7;

Example in FBD:

 SUB

Subtraction of one variable from another of the types: BYTE, WORD, DWORD,
SINT, USINT, INT, UINT, DINT, UDINT, REAL and LREAL.

A TIME variable may also be subtracted from another TIME variable resulting in
third TIME type variable. Note that negative TIME values are undefined.

10-12 907 AC 1131/Issued: 10/99Standard Library Elements5

Example in IL:

 LD 7

 SUB 8

 ST Var 1

Example in ST:

var1 := 7-2;

Example in FBD:

 DIV

Division of one variable by another of the types: BYTE, WORD, DWORD, SINT,
USINT, INT, UINT, DINT, UDINT, REAL and LREAL.

Example in IL:

 LD 8

 DIV 2

 ST Var 1 (* Result is 4 *)

Example in ST:

var1 := 8/2;

Example in FBD:

Hinweis: If you define functions in your project with the names
CheckDivByte, CheckDivWord, CheckDivDWord and CheckDivReal, you can
use them to check the value of the divisor if you use the operator DIV, for
example to avoid a division by 0 (see chapter ’What is what in 907 AC 1131’,
’Project components’ ’Function’)

 MOD

Modulo Division of one variable by another of the types: BYTE, WORD,
DWORD, SINT, USINT, INT, UINT, DINT, UDINT, REAL and LREAL. The result
of this function will be the remainder of the division. This result will be a whole
number.

Example in IL:

 LD 9

 MOD 2

 ST Var 1 (* Result is 1 *)

Example in ST:

var1 := 9 MOD 2;

10-13907 AC 1131/Issued: 10/99 Operands in 907 AC 1131 5

Example in FBD:

 INDEXOF

Perform this function to find the internal index for a POU.

Example in ST:

var1 := INDEXOF(POU2);

 SIZEOF

Perform this function to determine the number of bytes required by the given
data type.

Example in IL:

arr1:ARRAY[0..4] OF INT;
 Var1 INT

 LD arr1

 SIZEOF

 ST Var 1 (* Result is 10 *)

Example in ST:

var1 := SIZEOF(arr1);

Bitstring Operators

 AND

Bitwise AND of bit operands. The operands should be of the type BOOL, BYTE,
WORD or DWORD.

Example in IL:

 Var1 BYTE

 LD 2#1001_0011

 AND 2#1000_1010

 ST Var 1 (* Result is 2#1000_0010 *)

Example in ST:

var1 := 2#1001_0011 AND 2#1000_1010

Example in FBD:

10-14 907 AC 1131/Issued: 10/99Standard Library Elements5

Note: If you have a program step in the SFC like the following

and if you use 68xxx- or C-code generators, please note the following: The
allocation of the value of the second input variable at the AND operator module
to variable z will not be executed ! This is due to the optmized processing in the
SFC in case of value FALSE at the input variable.

 OR

Bitwise OR of bit operands. The operands should be of the type BOOL, BYTE,
WORD or DWORD.

Example in IL:

var1 :BYTE;
LD 2#1001_0011
OR 2#1000_1010
ST var1 (* Result is 2#1001_1011 *)

Example in ST:

Var1 := 2#1001_0011 OR 2#1000_1010

Example in FBD:

Note: If you have a program step in the SFC like the following

and if you use 68xxx- or C-code generators, please note the following: The
allocation of the value of the second input variable at the AND operator module
to variable z will not be executed ! This is due to the optmized processing in the
SFC in case of value FALSE at the input variable.

 XOR

Bitwise XOR of bit operands. The operands should be of the type BOOL, BYTE,
WORD or DWORD.

Example in IL:

Var1 :BYTE;
LD 2#1001_0011
XOR 2#1000_1010
ST Var1 (* Result is 2#0001_1001 *)

10-15907 AC 1131/Issued: 10/99 Operands in 907 AC 1131 5

Example in ST:

Var1 := 2#1001_0011 XOR 2#1000_1010

Example in FBD:

 NOT

Bitwise NOT of a bit operand. The operand should be of the type BOOL, BYTE,
WORD or DWORD.

Example in IL:

Var1 :BYTE;
LD 2#1001_0011
NOT
ST Var1 (* Result is 2#0110_1100 *)

Example in ST:

Var1 := NOT 2#1001_0011

Example in FBD:

Bit-Shift Operators

 SHL

Bitwise left-shift of an operand : erg:= SHL (in, n)

The input variables erg, in and n should be of the type BYTE, WORD, or
DWORD. in will be shifted to the left by n bits and filled with zeros on the right.

Note: Please note, that the amount of bits, which is regarded for the
arithmetic operation, is pretended by the data type of the input variable !. If the
input variable is a constant the smallest possible data type is regarded. The
data type of the output variable has no effect at all on the arithmetic operation.

See in the following example in hexadecimal notation that you get different
results for erg_byte and erg_word depending on the data type of the input
variable (BYTE or WORD), although the values of the input variables in_byte
and in_word are the same.

10-16 907 AC 1131/Issued: 10/99Standard Library Elements5

Example in ST:

Example in FBD:

Example in IL:

LD 16#45

SHL 2

ST erg_byte

 SHR

Bitwise right-shift of an operand: erg:= SHR (in, n)

erg, in and n should be of the type BYTE, WORD or DWORD. in will be shifted
to the right by n bits and filled with zeros on the left.

See the following example in hexadecimal notation to notice the results of the
arithmetic operation depending on the type of the input variable (BYTE or
WORD).

Example in ST:

10-17907 AC 1131/Issued: 10/99 Operands in 907 AC 1131 5

Example in FBD:

Example in IL:

LD 16#45

SHL 2

ST erg_byte

 ROL

Bitwise rotation of an operand to the left: erg:= ROL (in, n)

erg, in and n should be of the type BYTE, WORD or DWORD. in will be shifted
one bit position to the left n times while the bit that is furthest to the left will be
reinserted from the right.

Note: Please note, that the amount of bits, which is regarded for the
arithmetic operation, is pretended by the data type of the input variable !. If the
input variable is a constant the smallest possible data type is regarded. The
data type of the output variable has no effect at all on the arithmetic operation.

See in the following example in hexadecimal notation that you get different
results for erg_byte and erg_word depending on the data type of the input
variable (BYTE or WORD), although the values of the input variables in_byte
and in_word are the same.

Example in ST:

Example in FBD:

10-18 907 AC 1131/Issued: 10/99Standard Library Elements5

Example in IL:

LD 16#45

SHL 2

ST erg_byte

 ROR

Bitwise rotation of an operand to the right: erg = ROR (in, n)

erg, in and n should be of the type BYTE, WORD or DWORD. in will be shifted
one bit position to the right n times while the bit that is furthest to the left will be
reinserted from the left.

Note: Please note, that the amount of bits, which is regarded for the
arithmetic operation, is pretended by the data type of the input variable !. If the
input variable is a constant the smallest possible data type is regarded. The
data type of the output variable has no effect at all on the arithmetic operation.

See in the following example in hexadecimal notation that you get different
results for erg_byte and erg_word depending on the data type of the input
variable (BYTE or WORD), although the values of the input variables in_byte
and in_word are the same.

Example in ST:

Example in FBD:

Example in IL:

LD 16#45

SHL 2

ST erg_byte

10-19907 AC 1131/Issued: 10/99 Operands in 907 AC 1131 5

Selection Operators

All selection operations can also be performed with variables. For purposes of
clarity we will limit our examples to the following which use constants as
operators.

 SEL

Binary Selection.

OUT := SEL(G, IN0, IN1) means:
OUT := IN0 if G=FALSE;
OUT := IN1 if G=TRUE.

IN0, IN1 and OUT can be any type of variable, G must be BOOL. The result of
the selection is IN0 if G is FALSE, IN1 if G is TRUE.

Example in IL:

LD TRUE

SEL 3,4

ST Var1 (* Result ist 4 *)

Example in FBD:

 MAX

Maximum function. Returns the greater of the two values.

OUT := MAX(IN0, IN1)

IN0, IN1 and OUT can be any type of variable.

Example in IL:

LD 90

MAX 30

MAX 40

MAX 77

ST Var1 (* Result is 90 *)

Example in FBD:

 MIN

Minimum function. Returns the lesser of the two values.

10-20 907 AC 1131/Issued: 10/99Standard Library Elements5

OUT := MIN(IN0, IN1)

IN0, IN1 and OUT can be any type of variable.

Example in IL:

LD 90

MIN 30

MIN 40

MIN 77

ST Var 1 (* Result is 30 *)

Example in FBD:

 LIMIT

Limiting

OUT := LIMIT(Min, IN, Max) means:
OUT := MIN (MAX (IN, Min), Max)

Max is the upper and Min the lower limit for the result. Should the value IN
exceed the upper limit Max, LIMIT will return Max. Should IN fall below Min, the
result will be Min.

IN and OUT can be any type of variable.

Example in IL:

LD 90

LIMIT 30,80

ST Var 1 (*Result is 80 *)

 MUX

Multiplexer

OUT := MUX(K, IN0,...,INn) means:
OUT := INK.

IN0, ...,INn and OUT can be any type of variable. K must be BYTE, WORD,
DWORD, SINT, USINT, INT, UINT, DINT or UDINT. MUX selects the Kth value
from among a group of values.

Example in IL:

LD 0

MUX 30,40,50,60,70,80

ST Var 1 (*Result is 30 *)

10-21907 AC 1131/Issued: 10/99 Operands in 907 AC 1131 5

Comparison Operators

 GT

Greater than

A Boolean operator which returns the value TRUE when the value of the first
operand is greater than that of the second. The operands can be BOOL, BYTE,
WORD, DWORD, SINT, USINT, INT, UINT, DINT, UDINT, REAL, LREAL,
TIME, DATE, TIME_OF_DAY, DATE_AND_TIME and STRING.

Example in IL:

LD 20

GT 30

ST Var 1 (* Result is FALSE *)

Example in ST:

VAR1 := 20 > 30 > 40 > 50 > 60 > 70;

Example in FBD:

 LT

Less than

A Boolean operator that returns the value TRUE when the value of the first
operand is less than that of the second. The operands can be BOOL, BYTE,
WORD, DWORD, SINT, USINT, INT, UINT, DINT, UDINT, REAL, LREAL,
TIME, DATE, TIME_OF_DAY, DATE_AND_TIME and STRING.

Example in IL:

LD 20

LT 30

ST Var 1 (* Result is TRUE *)

Example in ST:

VAR1 := 20 < 30;

Example in FBD:

10-22 907 AC 1131/Issued: 10/99Standard Library Elements5

 LE

Less than or equal to

A Boolean operator that returns the value TRUE when the value of the first
operand is less than or equal to that of the second. The operands can be
BOOL, BYTE, WORD, DWORD, SINT, USINT, INT, UINT, DINT, UDINT,
REAL, LREAL, TIME, DATE, TIME_OF_DAY, DATE_AND_TIME and STRING.

Example in IL:

LD 20

LE 30

ST Var 1 (* Result is TRUE *)

Example in ST:

VAR1 := 20 <= 30;

Example in FBD

 GE

Greater than or equal to

A Boolean operator that returns the value TRUE when the value of the first
operand is greater than or equal to that of the second. The operands can be
BOOL, BYTE, WORD, DWORD, SINT, USINT, INT, UINT, DINT, UDINT,
REAL, LREAL, TIME, DATE, TIME_OF_DAY, DATE_AND_TIME and STRING.

Example in IL:

LD 60

GE 40

ST Var 1 (* Result is TRUE *)

Example in ST:

VAR1 := 60 >= 40;

Example in FBD:

 EQ

Equal to

A Boolean operator that returns the value TRUE when the operands are equal.
The operands can be BOOL, BYTE, WORD, DWORD, SINT, USINT, INT,
UINT, DINT, UDINT, REAL, LREAL, TIME, DATE, TIME_OF_DAY,
DATE_AND_TIME and STRING.

10-23907 AC 1131/Issued: 10/99 Operands in 907 AC 1131 5

Example in IL:

LD 40

EQ 40

ST Var 1 (* Result is TRUE *)

Example in ST:

VAR1 := 40 = 40;

Example in FBD:

 NE

Not equal to

A Boolean operator that returns that value TRUE when the operands are not
equal. The operands can be BOOL, BYTE, WORD, DWORD, SINT, USINT,
INT, UINT, DINT, UDINT, REAL, LREAL, TIME, DATE, TIME_OF_DAY,
DATE_AND_TIME and STRING.

Example in IL:

LD 40

NE 40

ST Var 1 (* Result is FALSE *)

Example in ST:

VAR1 := 40 <> 40;

Example in FBD:

Address Operators

 ADR

Address Function

ADR returns the address of its argument in a DWORD. This address can be
sent to manufacturing functions to be treated as a pointer or it can be assigned
to a pointer within the project.

Example in IL:

LD Var 1

ADR

ST Var 2

10-24 907 AC 1131/Issued: 10/99Standard Library Elements5

man_fun1

 Content Operator

A pointer can be dereferenced by adding the content operator "^" after the
pointer identifier.

Example in ST:

pt:POINTER TO INT;
var_int1:INT;
var_int2:INT;
pt := ADR(var_int1);
var_int2:=pt^;

Calling Operator

 CAL

Calling a function block or a program

Use CAL in IL to call up a function block instance. The variables that will serve
as the input variables are placed in parentheses right after the name of the
function block instance.

Example: Calling up the instance Inst from a function block where input
variables Par1 and Par2 are 0 and TRUE respectively.

CAL INST(PAR1 := 0, PAR2 := TRUE)

Type Conversion Functions

Its is forbidden to implicitly convert from a ”larger” type to a ”smaller” type (for
example from INT to BYTE or from DINT to WORD). Special type conversions
are required if one wants to do this. One can basically convert from any
elementary type to any other elementary type.

Syntax:

<elem.Typ1>_TO_<elem.Typ2>

 BOOL_TO Conversions

Conversion from type BOOL to any other type:

For number types the result is 1, when the operand is TRUE, and 0, when the
operand is FALSE.

For the STRING type the result is ‚TRUE‘ or ‚FALSE‘.

Examples in AWL:

10-25907 AC 1131/Issued: 10/99 Operands in 907 AC 1131 5

LD TRUE
BOOL_TO_INT
ST i

(*Result is 1 *)

LD TRUE
BOOL_TO_STRING
ST str

(*Result is ’TRUE’ *)

LD TRUE
BOOL_TO_TIME
ST t

(*Result is T#1ms *)

LD TRUE
BOOL_TO_TOD
ST

(*Result is TOD#00:00:00.001 *)

LD FALSE
BOOL_TO_DATE
ST dat

(*Result is D#1970-01-01 *)

LD TRUE
BOOL_TO_DT
ST dandt

(*Result is DT#1970-01-01-00:00:01
*)

Examples in St:

i:=BOOL_TO_INT(TRUE); (* Result is 1 *)

str:=BOOL_TO_STRING(TRUE); (* Result is "TRUE" *)

t:=BOOL_TO_TIME(TRUE); (* Result is T#1ms *)

tof:=BOOL_TO_TOD(TRUE); (* Result is TOD#00:00:00.001 *)

dat:=BOOL_TO_DATE(FALSE); (* Result is D#1970 *)

dandt:=BOOL_TO_DT(TRUE); (* Result is

DT#1970-01-01-00:00:01 *)

Examples in FUP:

(*Result is 1 *)

(*Result is ’TRUE’ *)

(*Result is T#1ms *)

(*Result is TOD#00:00:00.001 *)

(*Result is D#1970-01-01 *)

10-26 907 AC 1131/Issued: 10/99Standard Library Elements5

(*Result is
DT#1970-01-01-00:00:01 *)

 TO_BOOL Conversions

Conversion from another variable type to BOOL:

The result is TRUE when the operand is not equal to 0. The result is FALSE
when the operand is equal to 0.

The result is true for STRING type variables when the operand is "TRUE",
otherwise the result is FALSE.

Examples in AWL:

LD 213
BYTE_TO_BOOL
ST b

(*Result is TRUE *)

LD 0
INT_TO_BOOL
ST b

(*Result is FALSE *)

LD T#5ms
TIME_TO_BOOL
ST b

(*Result is TRUE *)

LD ’TRUE’
STRING_TO_BOOL
ST b

(*Result is TRUE *)

Examples in FUP:

(*Result is TRUE *)

(*Result is FALSE *)

(*Result is TRUE *)

(*Result is TRUE *)

Examples in St:

b := BYTE_TO_BOOL(2#11010101); (* Result is TRUE *)

b := INT_TO_BOOL(0); (* Result is FALSE *)

10-27907 AC 1131/Issued: 10/99 Operands in 907 AC 1131 5

b := TIME_TO_BOOL(T#5ms); (* Result is TRUE *)

b := STRING_TO_BOOL(’TRUE’); (* Result is TRUE *)

Conversion between Integral
Number Types

Conversion from an integral number type to another number type:

When you perform a type conversion from a larger to a smaller type, you risk
losing some information. If the number you are converting exceeds the range
limit, the first bytes for the number will be ignored.

Example in ST:

si := INT_TO_SINT(4223); (* Result is 127 *)
If you save the integer 4223 (16#107f represented hexadecimally) as a
SINT variable, it will appear as 127 (16#7f represented hexadecimally).

Example in IL:

LD 2

INT_TO_REAL

MUL 3.5

Example in FBD:

 REAL_TO-/ LREAL_TO
Conversions

Converting from the variable type REAL or LREAL to a different type:

The value will be rounded up or down to the nearest whole number and
converted into the new variable type. Exceptions to this are the variable types
STRING, BOOL, REAL and LREAL.

When you perform a type conversion from a larger to a smaller type, you risk
losing some information.

Example in ST:

i := REAL_TO_INT(1.5); (* Result is 2 *)
j := REAL_TO_INT(1.4); (* Result is 1 *)

Example in IL:

LD 2.7

REAL_TO_INT

GE %MW8

10-28 907 AC 1131/Issued: 10/99Standard Library Elements5

Example in FBD:

 TIME_TO/TIME_OF_DAY
Conversions

Converting from the variable type TIME or TIME_OF_DAY to a different type:

The time will be stored internally in a DWORD in milliseconds (beginning with
12:00 A.M. for the TIME_OF_DAY variable). This value will then be converted.

When you perform a type conversion from a larger to a smaller type, you risk
losing some information

For the STRING type variable, the result is a time constant.

Examples in IL:

LD T#12ms
TIME_TO_STRING

ST str

(*Result is ’T#12ms’ *)

LD T#300000ms
TIME_TO_DWORD
ST dw

(*Result is 300000 *)

LD TOD#00:00:00.012
TOD_TO_SINT
ST si

(*Result is 12 *)

Examples in St:

str :=TIME_TO_STRING(T#12ms); (* Result is T#12ms *)

dw:=TIME_TO_DWORD(T#5m); (* Result is 300000 *)

si:=TOD_TO_SINT(TOD#00:00:00.012); (* Result is 12 *)

Examples in FBD:

10-29907 AC 1131/Issued: 10/99 Operands in 907 AC 1131 5

 DATE_TO/DT_TO
Conversions

Converting from the variable type DATE or DATE_AND_TIME to a different
type:

The date will be stored internally in a DWORD in seconds since Jan. 1, 1970.
This value will then be converted.

When you perform a type conversion from a larger to a smaller type, you risk
losing some information

For STRING type variables, the result is the date constant.

Examples in St:

b :=DATE_TO_BOOL(D#1970-01-01); (* Result is FALSE *)

i :=DATE_TO_INT(D#1970-01-15); (* Result is 29952 *)

byt :=DT_TO_BYTE(DT#1970-01-15-05:05:05); (* Result is 129 *)

str:=DT_TO_STRING(DT#1998-02-13-14:20); (* Result is ’DT#1998-02-13-14:20’*)

 STRING_TO Conversions

Converting from the variable type STRING to a different type:

The operand from the STRING type variable must contain a value that is valid in
the target variable type, otherwise the result will be 0.

Examples in St:

b :=STRING_TO_BOOL(’TRUE’); (* Result is TRUE *)

w :=STRING_TO_WORD(’abc34’); (* Result is 0 *)

t :=STRING_TO_TIME(’T#127ms’); (* Result is T#127ms *)

 TRUNC

Converting from REAL to INT. The whole number portion of the value will be
used.

When you perform a type conversion from a larger to a smaller type, you risk
losing some information.

Examples in ST:

i:=TRUNC(1.9); (* Result is 1 *)
i:=TRUNC(-1.4); (* Result is 1 *)

Example in IL:

LD 2.7
TRUNC
GE %MW8

10-30 907 AC 1131/Issued: 10/99Standard Library Elements5

Numeric Functions

 ABS

Returns the absolute value of a number. ABS(-2) equals 2.

The following type combinations for input and output variables are possible:

 IN OUT
INT INT, REAL, WORD, DWORD, DINT
REAL REAL
BYTE INT, REAL, BYTE, WORD, DWORD, DINT
WORD INT, REAL, WORD, DWORD, DINT
DWORD REAL, DWORD, DINT
SINT REAL
USINT REAL
UINT INT, REAL, WORD, DWORD, DINT, UDINT, UINT
DINT REAL, DWORD, DINT
UDINT REAL, DWORD, DINT, UDINT

Example in IL:

LD 2

ABS

ST i (*Result is 2 *)

Example in ST:

i:=ABS(-2);

Example in FBD:

 SQRT

Returns the square root of a number.

IN can be type BYTE, WORD, DWORD, INT, DINT, REAL, SINT, USINT, UINT,
UDINT, OUT must be type REAL.

Example in IL:

LD 16

SQRT

ST q (*Result is 4 *)

Example in ST:

q:=SQRT(16);

Example in FBD:

10-31907 AC 1131/Issued: 10/99 Operands in 907 AC 1131 5

 LN

Returns the natural logarithm of a number.

IN can be type BYTE, WORD, DWORD, INT, DINT, REAL, SINT, USINT, UINT,
UDINT, OUT must be type REAL.

Example in IL:

LD 45

LN

ST q (*Result is 3.80666 *)

Example in ST:

q:=LN(45);

Example in FBD:

 LOG

Returns the logarithm of a number in base 10.

IN can be type BYTE, WORD, DWORD, INT, DINT, REAL, SINT, USINT, UINT,
UDINT, OUT must be type REAL.

Example in IL:

LD 314.5

LOG

ST q (*Result is 2.49762 *)

Example in ST:

q:=LOG(314.5);

Example in FBD:

 EXP

Returns the exponential function.

IN can be type BYTE, WORD, DWORD, INT, DINT, REAL, SINT, USINT, UINT,
UDINT, OUT must be type REAL.

Example in IL:

LD 2

EXP

ST q (*Result is 9.7448e+009 *)

10-32 907 AC 1131/Issued: 10/99Standard Library Elements5

Example in ST:

q:=EXP(2);

Example in FBD:

 SIN

Returns the sine of a number.

IN can be type BYTE, WORD, DWORD, INT, DINT, REAL, SINT, USINT, UINT,
UDINT, OUT must be type REAL.

Example in IL:

LD 0.5

SIN

ST q (*Result is 0.479426 *)

Example in ST:

q:=SIN(0.5);

Example in FBD:

 COS

Returns the cosine of number. The value is calculated in arch minutes.

IN can be type BYTE, WORD, DWORD, INT, DINT, REAL, SINT, USINT, UINT,
UDINT, OUT must be type Typ REAL.

Example in IL:

LD 0.5

COS

ST q (*Result is 0.877583 *)

Example in ST:q:=COS(0.5);

Example in FBD:

 TAN

Returns the tangent of a number. The value is calculated in arch minutes. IN
can be type BYTE, WORD, DWORD, INT, DINT, REAL, SINT, USINT, UINT,
UDINT, OUT must be type REAL.

10-33907 AC 1131/Issued: 10/99 Operands in 907 AC 1131 5

Example in IL:

LD 0.5

TAN

ST q (*Result is 0.546302 *)

Example in ST:

q:=TAN(0.5);

Example in FBD:

 ASIN

Returns the arc sine (inverse function of sine) of a number. .

IN can be type BYTE, WORD, DWORD, INT, DINT, REAL, SINT, USINT, UINT,
UDINT, OUT must be type REAL.

Example in IL:

LD 0.5

ASIN

ST q (*Result is 0.523599 *)

Example in ST:

q:=ASIN(0.5);

Example in FBD:

 ACOS

Returns the arc cosine (inverse function of cosine) of a number. The value is
calculated in arch minutes.

IN can be type BYTE, WORD, DWORD, INT, DINT, REAL, SINT, USINT, UINT,
UDINT, OUT must be type REAL.

Example in IL:

LD 0.5

ABS

ST q (*Result is 1.0472 *)

Example in ST:

q:=ACOS(0.5);

10-34 907 AC 1131/Issued: 10/99Standard Library Elements5

Example in FBD:

 ATAN

Returns the arc tangent (inverse function of tangent) of a number. The value is
calculated in arch minutes.

IN can be type BYTE, WORD, DWORD, INT, DINT, REAL, SINT, USINT, UINT,
UDINT, OUT must be type REAL.

Example in IL:

LD 0.5

ABS

ST q (*Result is 0.463648 *)

Example in ST:

q:=ATAN(0.5);

Example in FBD:

 EXPT

Exponentiation of a variable with another variable:

OUT = IN1IN2.

IN1 and IN2 can be type BYTE, WORD, DWORD, INT, DINT, REAL, SINT,
USINT, UINT, UDINT, OUT must be type REAL.

Example in IL:

LD 7

EXPT 2

ST var1 (*Result is 49 *)

Example in ST:

var1 := (7,2);

Example in FBD:

10-35907 AC 1131/Issued: 10/99 Operands in 907 AC 1131 5

Appendix D: Standard Library Elements

String Functions

 LEN

Returns the length of a string. Input STR is of type STRING, the return value of the
function is type INT.

Example in IL:

LD ’SUSI’

LEN

ST VarINT1 (* Ergebnis ist 4 *)

Example in FBD:

Example in ST:

VarSTRING1 := LEN (‘SUSI’);

 LEFT

Left returns the left, initial string for a given string. Input STR is type STRING,
SIZE is of type INT, the return value of the function is type STRING.

LEFT (STR, SIZE) means: Take the first SIZE character from the right in the
string STR.

Example in IL:

 LD ’SUSI’

 LEFT 3

 ST VarSTRING1 (* Ergebnis ist ‘SUS’ *)

Example in FBD:

Example in ST:

VarSTRING1 := LEFT (‘SUSI’,3);

 RIGHT

Right returns the right, initial string for a given string.

RIGHT (STR, SIZE) means: Take the first SIZE character from the right in the
string STR.

10-36

Input STR is of type STRING, SIZE is of type INT, the return value of the
function is of type STRING.

Example in IL:

 LD ’SUSI’

 RIGHT 3

 ST VarSTRING1 (* Ergebnis ist ‘USI’ *)

Example in FBD:

Example in ST:

VarSTRING1 := RIGHT (‘SUSI’,3);

 MID

Mid returns a partial string from within a string.

Input STR is type STRING, LEN and POS are type INT, the return value of the
function is type STRING.

MID (STR, LEN, POS) means: Retrieve LEN characters from the STR string
beginning with the character at position POS.

Example in IL:

 LD ’SUSI’

 RIGHT 2,2

 ST VarSTRING1 (* Ergebnis ist ‘US’ *)

Example in FBD:

Example in ST:

VarSTRING1 := MID (‘SUSI’,2,2);

 CONCAT

Concatenation (combination) of two strings.

10-37907 AC 1131/Issued: 10/99 Operands in 907 AC 1131 5

The input variables STR1 and STR2 as well as the return value of the function
are type STRING.

Example in IL:

 LD ’SUSI’

 CONCAT ‘WILLI’

 ST VarSTRING1 (* Ergebnis ist ‘SUSIWILLI’ *)

Example in FBD:

Example in ST:

VarSTRING1 := CONCAT (‘SUSI’,’WILLI’);

 INSERT

INSERT inserts a string into another string at a defined point.

The input variables STR1 and STR2 are type STRING, POS is type INT and the
return value of the function is type STRING.

INSERT(STR1, STR2, POS) means: insert STR2 into STR1 after position POS.

Example in IL:

 LD ’SUSI’

 INSERT ‘XY’,2

 ST VarSTRING1 (* Ergebnis ist ‘SUXYSI’ *)

Example in FBD:

Example in ST:

VarSTRING1 := INSERT (‘SUSI’,’XY’,2);

 DELETE

DELETE removes a partial string from a larger string at a defined position.

The input variable STR is type STRING, LEN and POS are type INT, the return
value of the function is type STRING.

DELETE(STR, L, P) means: Delete L characters from STR beginning with the
character in the P position.

10-38

Example in IL:

 LD ’SUXYSI’

 DELETE 2,23

 ST Var1 (* Ergebnis ist ‘SUSI’ *)

Example in FBD:

Example in ST:

Var1 := DELETE (‘SUXYSI’,2,3);

 REPLACE

REPLACE replaces a partial string from a larger string with a third string.

The input variable STR1 and STR2 are type STRING, LEN and POS are type
INT, the return value of the function is type STRING.

REPLACE(STR1, STR2, L, P) means: Replace L characters from STR1 with
STR2 beginning with the character in the P position.

Example in IL:

 LD ’SUXYSI’

 REPLACE ’K’, 2,2

 ST VarSTRING1 (* Ergebnis ist ‘SKYSI’ *)

Example in FBD:

Example in ST:

VarSTRING1 := REPLACE (‘SUXYSI’,’K’,2,2);

 FIND

FIND searches for a partial string within a string.

The input variable STR1 and STR2 are type STRING, the return value of the
function is type STRING.

FIND(STR1, STR2) means: Find the position of the first character where STR2
appears in STR1 for the first time. If STR2 is not found in STR1, then OUT:=0.

10-39907 AC 1131/Issued: 10/99 Operands in 907 AC 1131 5

Example in IL:

 LD ’SUXYSI’

 FIND ’XY’

 ST VarINT1 (* Ergebnis ist ‘3’ *)

Example in FBD:

Example in ST:

VarINT1 := FIND (‘SUXYSI’,’XY’);

Bistable Function Blocks

 SR

Making Bistable Function Blocks Dominant:

Q1 = SR (SET1, RESET) means:

Q1 = (NOT RESET AND Q1) OR SET1

The input variables SET1 and RESET as well as the output variable Q1 are
type BOOL.

Declaration example:

SRInst : SR ;

Example in IL:

 CAL SRInst(SET1 := VarBOOL1, RESET := VarBOOL2)

 LD SRInst.Q1

 ST VarBOOL3

Example in FBD:

Example in ST:

SRInst(SET1:= VarBOOL1 , RESET:=VarBOOL2);
VarBOOL3 := SRInst.Q1 ;

10-40

 RS

Resetting Bistable Function Blocks

Q1 = RS (SET, RESET1) means:

Q1 = NOT RESET1 AND (Q1 OR SET)

The input variables SET and RESET1 as well as the output variable Q1 are
type BOOL.

Declaration example:

RSInst : RS ;

Example in IL:

 CAL RSInst(SET := VarBOOL1, RESET1 := VarBOOL2)

 LD RSInst.Q1

 ST VarBOOL3

Example in FBD:

Example in ST:

RSInst(SET:= VarBOOL1 , RESET1:=VarBOOL2);
VarBOOL3 := RSInst.Q1 ;

 SEMA

A Software Semaphore (Interruptible)

BUSY = SEMA(CLAIM, RELEASE) means:

BUSY := X;
IF CLAIM THEN X:=TRUE;
ELSE IF RELEASE THEN BUSY := FALSE; X:= FALSE;
END_IF

X is an internal BOOL variable that is FALSE when it is initialized.
The input variables CLAIM and RELEASE as well as the output variable BUSY
are type BOOL.

If BUSY is TRUE when SEMA is called up, this means that a value has already
been assigned to SEMA (SEMA was called up with CLAIM = TRUE). If BUSY is
FALSE, SEMA has not yet been called up or it has been released (called up
with RELEASE = TRUE).

Declaration example:

SEMAInst : SEMA ;

Example in IL:

 CAL SEMAInst(CLAIM := VarBOOL1, RELEASE := VarBOOL2)

10-41907 AC 1131/Issued: 10/99 Operands in 907 AC 1131 5

 LD SEMAInst.BUSY

 ST VarBOOL3

Example in FBD:

Example in ST:

SEMAInst(CLAIM:= VarBOOL1 , RELEASE:=VarBOOL2);
VarBOOL3 := SEMAInst.BUSY;

Trigger

 R_TRIG

The function block R_TRIG detects a rising edge.

FUNCTION_BLOCK R_TRIG
VAR_INPUT

CLK : BOOL;
END_VAR
VAR_OUTPUT

Q : BOOL;
END_VAR
VAR

M : BOOL := FALSE;
END_VAR

Q0 := CLK AND NOT M;
M := CLK;

END_FUNCTION_BLOCK

The output Q0 and the help variable M will remain FALSE as long as the input
variable CLK is FALSE. As soon as S1 returns TRUE, Q will first return TRUE,
then M will be set to TRUE. This means each time the function is called up, Q
will return FALSE until CLK has falling edge followed by an rising edge.

Declaration example:

RTRIGInst : R_TRIG ;

Example in IL:

 CAL RTRIGInst(CLK := VarBOOL1)

 LD RTRIGInst.Q

 ST VarBOOL2

Example in FBD:

10-42

Example in ST:

RTRIGInst(CLK:= VarBOOL1);
VarBOOL2 := RTRIGInst.Q;

 F_TRIG

The function block F_TRIG a falling edge.

FUNCTION_BLOCK F_TRIG
VAR_INPUT

CLK: BOOL;
END_VAR
VAR_OUTPUT

Q: BOOL;
END_VAR
VAR

M: BOOL := FALSE;
END_VAR

Q := NOT CLK AND NOT M;
M := NOT CLK;

END_FUNCTION_BLOCK

The output Q and the help variable M will remain FALSE as long as the input
variable CLK returns TRUE. As soon as CLK returns FALSE, Q will first return
TRUE, then M will be set to TRUE. This means each time the function is called
up, Q will return FALSE until CLK has a rising followed by a falling edge.

Declaration example:

FTRIGInst : F_TRIG ;

Example in IL:

CAL FTRIGInst(CLK := VarBOOL1)

LD FTRIGInst.Q

ST VarBOOL2

Example in FBD:

Example in ST:

FTRIGInst(CLK:= VarBOOL1);
VarBOOL2 := FTRIGInst.Q;

Counter

 CTU

The function block Incrementer:

10-43907 AC 1131/Issued: 10/99 Operands in 907 AC 1131 5

The input variables CU and RESET as well as the output variable Q are type
BOOL, the input variable PV and the output variable CV are type WORD.

The counter variable CV will be initialized with 0 if RESET is TRUE. If CU has a
rising edge from FALSE to TRUE, CV will be raised by 1.Q will return TRUE
when CV is greater than or equal to the upper limit PV.

Declaration example:

CTUInst : CTU ;

Example in IL:

 CAL CTUInst(CU := VarBOOL1, RESET := VarBOOL2, PV := VarINT1)

 LD CTUInst.Q

 ST VarBOOL3

 LD CTUInst.CV

 ST VarINT2

Example in FBD:

Example in ST:

CTUInst(CU:= VarBOOL1, RESET:=VarBOOL2 , PV:= VarINT1);
VarBOOL3 := CTUInst.Q ;
VarINT2 := CTUInst.CV;

 CTD

Function Block Decrementer:

The input variables CD and LOAD_ as well as the output variable Q are type
BOOL, the input variable PV and the output variable CV are type INT.

When LOAD_ is TRUE, the counter variable CV will be initialized with the upper
limit PV. If CD has a rising edge from FALSE to TRUE, CV will be lowered by 1
provided CV is greater than 0 (i.e., it doesn’t cause the value to fall below 0).

Q returns TRUE when CVis equal 0.

Declaration example:

CTDInst : CTD ;

Example in IL:

 CAL CTDInst(CD := VarBOOL1, LOAD := VarBOOL2, PV := VarINT1)

 LD CTDInst.Q

 ST VarBOOL3

10-44

 LD CTDInst.CV

 ST VarINT2

Example in FBD:

Example in ST:

CTDInst(CD:= VarBOOL1, LOAD:=VarBOOL2 , PV:= VarINT1);
VarBOOL3 := CTDInst.Q ;
VarINT2 := CTDInst.CV;

 CTUD

Function Block Incrementer/Decrementer

The input variables CU, CD, RESET, LOAD_ as well as the output variables QU
and QD are type BOOL, PV and CV are type WORD.

If RESET is valid, the counter variable CV will be initialized with 0. If LOAD is
valid, CV will be initialized with PV.

If CU has a rising edge from FALSE to TRUE, CV will be raised by 1. If CD has
a rising edge from FALSE to TRUE, CV will be lowered by 1 provided this does
not cause the value to fall below 0.

QU returns TRUE when CV has become greater than or equal to PV.

QD returns TRUE when CV has become equal to 0.

Declaration example:

CTUDInst : CUTD ;

Example in IL:

 CAL CTUDInst(CU := VarBOOL2, RESET := VarBOOL3, LOAD :=
VarBOOL4, PV := VarINT1)

 LD CTUDInst.QU

 ST VarBOOL5

 LD CTUDInst.QD

 ST VarBOOL6

 LD CTUDInst.CV

 ST VarINT2

10-45907 AC 1131/Issued: 10/99 Operands in 907 AC 1131 5

Example in FBD:

Example in ST:

CTUDInst(CU := VarBOOL1, CU:= VarBOOL2, RESET := VarBOOL3,
LOAD:=VarBOOL4 , PV:= VarINT1);

VarBOOL5 := CTUDInst.QU ;
VarBOOL6 := CTUDInst.QD ;
VarINT2 := CTUDInst.CV;

Timer

 TP

The function blockTimer is a trigger.

TP(IN, PT, Q, ET) means:

IN and PT are input variables of the BOOL and TIME types respectively. Q and
ET are output variables of the BOOL and TIME types respectively. If IN is
FALSE, Q is FALSE and ET is 0.

As soon as IN becomes TRUE, the time will begin to be counted in milliseconds
in ET until its value is equal to PT. It will then remain constant.

Q is TRUE if IN is TRUE and ET is less than or equal to PT. Otherwise it is
FALSE.

Q returns a signal for the time period given in PT.

Graphic Display of the TP Time Sequence

Declaration example:

TPInst : TP ;

10-46

Example in IL:

 CAL TPInst(IN := VarBOOL1, PT := T#5s)

 LD TPInst.Q

 ST VarBOOL2

Example in FBD:

Example in ST:

TPInst(IN := VarBOOL1, PT:= T#5s);
VarBOOL2 :=TPInst.Q;

 TON

The function block Timer On Delay implements a turn-on delay.

TON(IN, PT, Q, ET) means:

IN and PT are input variables of the BOOL and TIME types respectively. Q and
ET are output variables of the BOOL and TIME types respectively. If IN is
FALSE, Q is FALSE and ET is 0.

As soon as IN becomes TRUE, the time will begin to be counted in milliseconds
in ET until its value is equal to PT. It will then remain constant.

Q is TRUE when IN is TRUE and ET is equal to PT. Otherwise it is FALSE.

Thus, Q has a rising edge when the time indicated in PT in milliseconds has run
out.

Graphic display of TON behavior over time:

Declaration example:

TONInst : TON ;

Example in IL:

 CAL TONInst(IN := VarBOOL1, PT := T#5s)

 LD TONInst.Q

 ST VarBOOL2

10-47907 AC 1131/Issued: 10/99 Operands in 907 AC 1131 5

Example in FBD:

Example in ST:

TONInst(IN := VarBOOL1, PT:= T#5s);

 TOF

The function block TOF implements a turn-off delay.

TOF(IN, PT, Q, ET) means:

IN and PT are input variables type BOOL respectively TIME. Q and E are output
variabls type BOOL respectively TIME. If IN is TRUE, the outputs are TRU
respectively 0.

As soon as IN becomes FALSE, in ET the time will begin to be counted in
milliseconds in ET until its value is equal to PT. It will then remain constant.

Q is FALSE when IN is FALSE und ET equal PT. Otherwise it is TRUE.

Thus, Q has a falling edge when the time indicated in PT in milliseconds has
run out.

Graphic display of TOF behavior over time:

Declaration example:

TOFInst : TOF ;

Example in IL:

 CAL TOFInst(IN := VarBOOL1, PT := T#5s)

 LD TOFInst.Q

 ST VarBOOL2

Example in FBD:

10-48

Example in ST:

TOFInst(IN := VarBOOL1, PT:= T#5s);
VarBOOL2 :=TOFInst.Q;

10-49907 AC 1131/Issued: 10/99 Operands in 907 AC 1131 5

Appendix E: Operands in 907 AC 1131

Operands

Constants, variables, addresses and possibly function calls can appear as
operands.

Constants

 BOOL Constants

BOOL constants are the logical values TRUE and FALSE.

 TIME Constants

TIME constants can be declared in 907 AC 1131 . These are generally used to
operate the timer in the standard library. A TIME constant is always made up of
an initial "t" or "T" (or "time" or "TIME" spelled out) and a number sign "#".

This is followed by the actual time declaration which can include days (identified
by "d"), hours (identified by "h"), minutes (identified by "m"), seconds (identified
by "s") and milliseconds (identified by "ms"). Please note that the time entries
must be given in this order according to length (d before h before m before s
before m before ms) but you are not required to include all time increments.

Examples of correct TIME constants in a ST assignment:

TIME1 := T#14ms;
TIME1 := T#100S12ms; (*The highest component may be

allowed to exceed its limit*)
TIME1 := t#12h34m15s;

the following would be incorrect:

TIME1 := t#5m68s; (*limit exceeded in a lower component*)
TIME1 := 15ms; (*T# is missing*)
TIME1 := t#4ms13d; (*Incorrect order of entries*)

 DATE Constants

These constants can be used to enter dates. A DATE constant is declared
beginning with a "d", "D", "DATE" or "date" followed by "#". You can then enter
any date with format Year-Month-Day.

Examples:

DATE#1996-05-06
d#1972-03-29

 TIME_OF_DAY Constants

Use this type of constant to store times of the day. A TIME_OF_DAY
declaration begins with "tod#", "TOD#", "TIME_OF_DAY#" or "time_of_day#"
followed by a time with the format: Hour:Minute:Second. You can enter seconds
as real numbers or you can enter fractions of a second.

10-50

Examples:

TIME_OF_DAY#15:36:30.123
tod#00:00:00

 DATE_AND_TIME Constants

Date constants and the time of day can also be combined to form so-called
DATE_AND_TIME constants. DATE_AND_TIME constants begin with "dt#",
"DT#", "DATE_AND_TIME#" or "date_and_time#". Place a hyphen after the
date followed by the time.

Examples:

DATE_AND_TIME#1996-05-06-15:36:30
dt#1972-03-29-00:00:00

 Number Constants

Number values can appear as binary numbers, octal numbers, decimal
numbers and hexadecimal numbers. If an integer value is not a decimal
number, you must write its base followed by the number sign (#) in front of the
integer constant. The values for the numbers 10-15 in hexadecimal numbers
will be represented as always by the letters A-F.

You may include the underscore character within the number.

Examples:

14 (Decimal number)
2#1001_0011 (Binary number)
8#67 (Octal number)
16#A (Hexadecimal number)

These number values can be from the variable types BYTE, WORD, DWORD,
SINT, USINT, INT, UINT, DINT, UDINT, REAL or LREAL.

Implicit conversions from "larger" to "smaller" variable types are not permitted.
This means that a DINT variable cannot simply be used as an INT variable. You
must use the type conversion (see the Type Conversions chapter in the
appendix).

 REAL/LREAL Constants

REAL and LREAL constants can be given as decimal fractions and represented
exponentially. Use the standard American format with the decimal point to do
this.

Example:

7.4 instead of 7,4
1.64e+009 instead of 1,64e+009

STRING Constants

A string is a sequence of characters. STRING constants are preceded and
followed by single quotation marks. You may also enter blank spaces and

10-51907 AC 1131/Issued: 10/99 Operands in 907 AC 1131 5

special characters (umlauts for instance). They will be treated just like all other
characters.

In character sequences, the combination of the dollar sign ($) followed by two
hexadecimal numbers is interpreted as a hexadecimal representation of the
eight bit character code. In addition, the combination of two characters that
begin with the dollar sign are interpreted as shown below when they appear in a
character sequence:

$$ Dollar signs

$’ Single quotation mark

$L or $l Line feed

$N or $n New line

$P or $p Page feed

$R or $r Line break

$T or $t Tab

Examples:

'w1Wüß?'
' Abby and Craig '
':-)'

Variables

Variables can be declared either locally in the declaration part of a POU or in a
global variable list.

The variable identifier may not contain any blank spaces or special characters,
may not be declared more than once and cannot be the same as any of the
keywords. Capitalization is not recognized which means that VAR1, Var1, and
var1 are all the same variable. The underscore character is recognized in
identifiers (e.g., "A_BCD" and "AB_CD" are considered two different identifiers).
An identifier may not have more than one underscore character in a row. The
first 32 characters are significant.

Variables can be used anywhere the declared type allows for them.

You can access available variables through the Input Assistant.

 System Flags

System flags are implicitly declared variables that are different on each specific
PLC. To find out which system flags are available in your system, use the
command "Insert" "Operand" An Input Assistant dialog box pops up, select
the category System Variable.

10-52

 Accessing variables for arrays,
structures and POUs.

Two-dimensional array components can be accessed using the following
syntax:

<Fieldname>[Index1, Index2]

Structure variables can be accessed using the following syntax:

<Structurename>.<Variablenname>

Function block and program variables can be accessed using the following
syntax:

<Functionblockname>.<Variablename>

Addresses

 Address

The direct display of individual memory locations is done through the use of
special character sequences. These sequences are a concatenation of the
percent sign "%", a range prefix, a prefix for the size and one or more natural
numbers separated by blank spaces.

The following range prefixes are supported:

 I Input

 Q Output

 M Memory location

The following size prefixes are supported:

 X Single bit

 None Single bit

 B Byte (8 Bits)

 W Word (16 Bits)

 D Double word (32 Bits)

Examples:

%QX75 and %Q75 Output bit 75

%IW215 Input word 215

%QB7 Output byte 7

%MD48 Double word in memory position 48 in the memory
location.

%IW2.5.7.1 depending on the PLC Configuration

The current PLC Configuration for the program determines whether or not an
address is valid.

 Memory location

You can use any supported size to access the memory location.

10-53907 AC 1131/Issued: 10/99 Operands in 907 AC 1131 5

For example, the address %MD48 would address bytes numbers 192, 193, 194,
and 195 in the memory location area (48 * 4 = 192). The number of the first byte
is 0.

You can access words, bytes and even bits in the same way: the address
%MX5.0 allows you to access the first bit in the fifth word (Bits are generally
saved wordwise).

Functions

In ST a function call can also appear as an operand.

Example: Result := Fct(7) + 3;

10-54

10-55907 AC 1131/Issued: 10/99 Operands in 907 AC 1131 5

Appendix F: Command Line/Command File Commands

Command Line Commands

When 907 AC 1131 is started, you can add commands in the command line
which will be asserted during execution of the program. These commands start
with a „/“. Capitalization/Use of small letters is not regarded. The commands will
be executed sequentially from the left to the right.

/debug Additional debug outputs like listings etc. are activated.

/online Immediately after start 907 AC 1131 tries to go online with the
current project.

/run After login 907 AC 1131 starts the application program.

Only valid in combination with /online.

/show ...

/show hide

/show icon

/show max
/show normal

Settings for the 907 AC 1131 frame window can be made.

The window will not be displayed, it also will not be represented in
the task menu.

The window will be minimized in display.

The window will be maximized in display.

The window will be displayed in the same status as it was during
the last closing.

/out <outfile> All messages are displayed in the message window and
additionally are written in the file <outfile>.

/cmd
<cmdfile>

After starting the commands of the <cmdfile> get executed.

xample for a command line:

The project ampel.pro gets opened, but no window opens. The commands
included in the command file command.cmd will be executed.

C:\ampel.pro /show hide /cmd command.cmd

Command File (cmdfile) Commands

See the following table for a list of commands, which can be used in a
command file (<cmdfile>). The command file you can call by a command line
(see above) aufrufen können. Capitalizing/Use of small letters is not regarded.
The command line will be displayed as a message in the message window and
can be given out in a message file (see below). Additionally to the command a
„@“ is prefixed. All signs after a semicolon (;) will be ignored (comment).

Commands of the online menu:

online login Login with the loaded project (’Online Login’)

online logout Logout (’Online’ ’Logout’)

10-56

online run Start of the application program (’Online’ ’Run’)

online sim Switch on of simulation mode (�) ’Online’ ’Simulation’)

online sim off Switch off of simulation mode (’Online’ ’Simulation’)

Commands of the file menu

file new A new project is created (’File’ ’New’)

file open <projectfile> The project <projectfile> will be loaded (’File’ ’Open’)

file close The current project will be closed (’File’ ’Close’)

file save The current project will be stored (’File’ ’Save’)

file saveas <projectfile> The current project will be saved with the file name
<projectfile> (’File’ ’Save as’)

file quit 907 AC 1131 will be closed (’File’ ’Exit’)

Commands of the project menu:

project compile The current project will be compiled by "Rebuild all"
(’Project’ ’Rebuild all’)

project check The current project will be checked (’Project’ ’Check’)

project build The current project will be built (’Projekt’ ’Build’)

project import <file1> ...
<fileN>

The files <file1> ... <fileN> get imported into the
current project (’Project’ ’Import’)

project export <expfile> The current project will be exported in the file
<expfile> (’Project’ ’Export’)

project expmul Each object of the current project will be exported in
an own file, which gets the name of the object.

Commands for the control of the message file:

out open <msgfile> The file <msgfile> opens as message file. New
messages will be appended

out close The currently shown message file will be closed.

out clear All messages of the currently opened message file will
be deleted.

Commands for the control of messages:

echo on The command lines will be displayed as messages.

echo off The command lines will not be displayed as
messages.

echo <text> <text> will be displayed in the message window.

Commands for the control of replace of objects respectively for the control of
files for import, export, replace:

replace ok Replace

10-57907 AC 1131/Issued: 10/99 Operands in 907 AC 1131 5

replace yes

replace no Do not replace

replace yesall Replace all

replace noall Replace none

Commands for the control of the default parameters of 907 AC 1131 dialogs:

query on Dialogs are displayed and need user input

query off ok All dialogs respond as if the user had clicked on the
’OK’ button

query off no All dialogs respond as if the user had clicked on the
’No’ button

query off cancel All dialogs respond as if the user had clicked on the
’Cancel’ button

debug command:

debug corresponds to the command "/debug" in the
command line

Command for calling command files as subroutines:

call <parameter1> ...
<parameter10>

Command files are called as subroutines. Up to ten
parameters can be consigned. In the subroutine called
you can access the parameters using $0 - $9.

Command for setting the libraries used by 907 AC 1131 :

dir lib <libdir> <libdir> is set as library directory

dir compile <compiledir> <compiledir> is set as directory for compile files

Command for setting a delay time concerning execution of the CMDFILEs:

delay 5000 Wartet 5 Sekunden

Commands for control of the Watch and Receipt Manager:

watchlist load <file> The watch list saved in <file> will be loaded Watchliste
and the appropriate window will be opened (’Extras’
’Load Watch List’)

watchlist save <file> Saves the current watch list in <file> (’Extras’ ’Save
Watch List’)

watchlist set <text> A previous loaded watch list gets the name <text>
(’Extras’ ’Rename Watch List’)

watchlist read The values of the watch variables are updated
(’Extras’ ’Read Receipt’)

watchlist write The values of the watch list are written to the watch
variables(’Extras’ ’Write Receipt’)

10-58

Example of a command file:

A command file like shown below will open the project file ampel.pro, will then
load a watch list, which was stored as w.wtc, will then start the application
program and write – after 1 second delay - the values of the variables into the
watch list watch.wtc (which will be saved) and will finally close the project.

file open C:\work\projects\907 AC 1131 _test\ampel.pro
query off ok
watchlist load c:\work\w.wtc
online login
online run
delay 1000
watchlist read
watchlist save c:\work\watch.wtc
online logout
file close

10-59907 AC 1131/Issued: 10/99 Error Messages 5

Appendix G: Error messages

Here you will find the error messages that the parser displays (italics) and
possible causes.They are shown in alphabetical order:

"ADR does not require an expression or constant
or addressed variable as operand"

Replace the term or the constant with a variable.

""Function name not allowed here""

Replace the function call with a variable or a constant.

"<Number> operands is too many for
<operator>. Exactly <number> are needed."

Check to see how many operands the operator <operator> requires and insert
the ones that are missing.

"<Number> operands is too few for <operator>.
At least <number> are needed"

Check to see how many operands the operator <operator> requires and remove
those that aren’t needed.

"Only BOOL variables are allowed at a bit
address"

Change the type of declaration to BOOL or change the address to a different
format.

"IL Operator Expected"

Change the first word in the line to a valid operator or a valid function.

"POU ends incorrectly: add ST or delete the last
expression."

The POU ends with an incomplete expression. Add the correct ending or delete
it.

"POU <Name> is not defined in the project"

Define a POU named <name> using the menu command "Project" "Object add"
or change the name to the name of the POU defined.

10-60 907 AC 1131/Issued: 10/99Error Messages5

"POU <Name>needs exactly <number> inputs"

Check the number of input variables this POU requires, then add or remove
them as needed.

"Identifier expected"

Enter a valid identifier at the beginning of the declaration part.

"CAL, CALC, or CALN require function block
instance as operand"

Declare an instance for the function block that you would like to call up.

"<Component> is not a component of
<variable>"

If the variable is a structure, change the component into one of the components
that are declared in this structure.

If the variable is a function block instance, change the <component> into an
input or output parameter that is declared in this function block.

"Index expression of an array must be type INT"

Change the index into a constant or an INT type variable.

"Conditional Operator requires type BOOL"

The result of the previous instruction is not a BOOL type variable. Insert an
operator or a function whose result is BOOL.

"Name used in interface is not identical with
POU name"

Rename your POU with the menu command "Project" "Object Rename" or
change the name of the POU in its declaration part. The name must appear
directly after the keywords, PROGRAM, FUNCTION or FUNCTIONBLOCK.

"End value of FOR statement must be of type
INT"

Change the variable to an INT type variable.

"Increment value of FOR statement must be of
type INT"

Change the variable to an INT type variable.

"Step name is no identifier: <name>"

Change the identifier <name> to a valid identifier

10-61907 AC 1131/Issued: 10/99 Error Messages 5

"CASE requires selector of an integer type"

Change the selector to an INT type selector.

"Start value of FOR statement must be of type
INT"

Change the variable to an INT type variable.

"Variable of FOR statement must be of type INT.
"

Change the variable to an INT type variable.

"Expression in FOR statement is not variable
with write access"

Change the variable to a variable with write permission.

"It is not possible to locate an array of strings to
an address"

Clear the address assignment.

"It is not possible to locate an array of an array
to an address"

Clear the address assignment.

"Extra characters following valid watch
expression"

Remove the extra characters.

"Function block call requires function block
instance"

Insert the name of the desired instance or remove the call for the function block.

"A jump must have exactly one label"

Change the jump destination to a defined label.

"END_STRUCT or identifier expected"

A structure definition must end with the keyword END_STRUCT.

"END_VAR or identifier expected"

Write in valid identifier or END_VAR at the beginning of the declaration part.

10-62 907 AC 1131/Issued: 10/99Error Messages5

"At most 4 numerical fields allowed in addresses"

Remove the extra address fields.

"Expression expected"

An expression must be entered at this point.

"EXIT outside a loop"

Remove EXIT

"Error in initial value"

Enter a constant (constants) for the initial value which corresponds to the
declaration type.

"Too many parameters in function <Name>"

Delete the extra parameters.

"<Name> function has too few parameters"

Add the missing parameters.

"No instance specied for call of function block
<name>"

Change the text of the instance for function block <name> (initialized with
"Instance") in the identifier of a valid instance declaration.

"Integer number or symbolic constant expected"

Only integers or symbolic constants can be used as the condition for a CASE
instance. Change the incorrect condition.

"<Identifier> is not a function"

Change <identifier> into one of the functions from the libraries that are linked to
the project or into one of the function declared in the project.

"IF and ELSIF require a Boolean expression for
the condition"

Change the expression to an expression with a BOOL type result.

"Illegal time constants"

Check to see if the time constant you wrote is correct and change any
mistakes you find. Possible mistakes are:

The t or # is missing at the beginning.
A time entry appears twice (e.g., t#4d2d).

10-63907 AC 1131/Issued: 10/99 Error Messages 5

Incorrect sequence of times.

Incorrect time indicator (the d, h, m, s or ms is missing).

"’[<index]’ needs array variables"

Declare the identifier before the bracket as an array or change it into a declared
array variable.

"INI operator needs function block instance or a
data unit type instance"

Change the operands into a function block instance. To do this, declare the
operand as a function block or use a previously declared function block, or use
a data unit type instance.

"No *.obj found"

Turn on Simulation Mode.

"Label in brackets not allowed"

Remove the label or the parentheses.

"No write access to variable <Name> allowed"

Change <name> into a variable with write permission.

"Comments are only allowed at the end of the line
in IL"

Write the comments at the end of the line.

"LD expected"

The instruction "LD" is the only one allowed in this line.

"It is not possible to locate a multidimensional
array to an address"

Clear the address assignment.

"Duplicate definition of identifier <name>"

Rename one of the identifiers.

"Duplicate definition of label <names>"

Remove one of the defined labels.

10-64 907 AC 1131/Issued: 10/99Error Messages5

"Multiple underscore in identifier"

Remove one of the underscore characters from the identifier.

"At least one statement is required"

Enter an instruction.

"Address expected after ’AT’"

Insert a valid address after the AT or change the keyword AT.

"Number expected after ’+’ or ’-’"

Change the word after + or - into a valid constant.

"No comma allowed after ’)’"

Remove the comma.

"Number is expected after ’,’"

Remove the comma or insert an additional number.

"<Name> is not an input variable of the called
function block"

Check over the input variables for the called function block and change <name>
into one of these variables.

"<Name> is no function block"

Replace <name> with the name of a valid function block.

"<Name> must be a declared instance of the
function block <FBName>"

Change the text of the function block instance (initialized with "Instance") into an
identifier for a valid function block instance declaration.

"’N’ modifier requires a BOOL type operand"

Remove the N and negate the operand explicitly with the NOT operator

"NOT requires an operand of type BOOL"

Change the operand into a BOOL type operand.

"Only VAR and VAR_GLOBAL can be located to
addresses"

Copy the declaration into a VAR or VAR_GLOBAL area.

10-65907 AC 1131/Issued: 10/99 Error Messages 5

"Variable with write access or direct address
required for ST, STN, S, R"

Replace the first operand with a variable that has write permission

"Operand expected"

Add an additional operand.

"<Operator> in parentheses is not allowed"

This operator is not allowed within parentheses. Either remove the parentheses
or the operator.

"Operator is not extendable. Remove the surplus
operands"

Check the number of operands for this operator and remove the surplus
operands.

"Type mismatch in parameter <number>: Cannot
convert <type> to <type>."

Check the type of the operand with the number <number> of this operator,
function or function block. Change the type of the variable that caused the error
to a type that is allowed or select a new variable of an allowed type.

"Closing bracket with no corresponding opening
bracket"

Remove the end bracket or insert the beginning one.

"Keywords must be uppercase"

Change how the keyword is written.

"Step names are duplicated: ’<Name>’"

Change one of the names.

"Jump to an undefined step: <Name>"

Change <name> into the name of an existing step or add a step named
<name>.

"Jump and Return require an Boolean input"

The result of the previous instruction is not a BOOL result. Insert an operator or
a function with a result of the type BOOL.

10-66 907 AC 1131/Issued: 10/99Error Messages5

"Jump and Return are only allowed on the right
side of a network"

Delete the jump or return that is not allowed.

"<Label> label is not defined"

Define a label with the name <LabelName> or change <LabelName> into a
defined label.

"<string> is not an operator"

Change <string> into a valid operator

"Expecting type specification"

Write a valid type behind the identification in the declaration

"Unknown type: <string>"

Change <string> into a valid type.

"Unrecognized variable or address"

This watch variable is not declared in the project. Press <F2> to access help
with declared variables.

"Unexpected End"

In the declaration part: Add the keyword END_VAR to the end of the declaration
part.

In the text editor: Insert instructions that end the last instruction sequence (e.g.,
ST).

"Unexpected end of text in brackets"

Insert an end bracket.

"UNTIL requires a BOOL expression as
condition"

Change the expression to an expression with a BOOL type result.

"Type mismatch: Cannot convert <Type1> into
<Type2>.

Check the required types of operators (search for Operator in your help file) and
change the variable type that produced the error into a type that is allowed or
select another variable.

10-67907 AC 1131/Issued: 10/99 Error Messages 5

"Invalid address: <Address>"

Check in your PLC Configuration to see which addresses are allowed and
replace the addresses with permissible addresses or change the PLC
Configuration.

"Type mismatch on input _1_variable <name>:
Cannot convert <Type1> into <Type2>."

A value that is <Type2> (which is not allowed) is assigned to the variable
<name>. Change the variable or the constant into a variable or constant of the
type <Type1>.

"Type mismatch in parameter <name> of
<name>: Cannot convert <Type1> into
<Type2>."

Use a <Type2> type variable for the assignment to the <name> parameter or
change the type of assigned variable to <Type1>.

"Type mismatch in parameter <Parameter> of
<POU>: Cannot convert <Type1> into
<Type2>."

Check to see what type of <parameter> parameter are required in the <POU>
POU. Change the type of the variable that caused the error to <Type2> or
select another variable that is <Type2>.

"Invalid characters follow the valid expression:
’<name>’"

Remove the extra characters.

"Identifier <name> not defined"

Declare this variable in the declaration part of the POU or in the global variable
list.

"VAR, VAR_INPUT, VAR_OUTPUT or
VAR_INOUT expected"

The first line after the name of the POU must contain one of these keywords.

"’.’ needs structure variable."

The identifier to the left of ’.’ is not a structure variable or instance for a function
block. Change the identifier into a structure variable or into a instance for a
function block or remove the period and the identifier to its right.

10-68 907 AC 1131/Issued: 10/99Error Messages5

"WHILE requires a Boolean expression as its
condition"

Change the expression to an expression with a BOOL type result.

"Expecting Number, ELSE or END_CASE"

The end of a CASE statement is incorrect. Add the keyword END_CASE.

"Too many indices for array"

Check how many indices are declared for the array(1, 2, or 3) and remove the
extra ones.

"Overflow of identifier list"

You must learn to restrain yourself, no more than 64000 identifiers are allowed.

"Too few indices for array"

Check how many indices are declared for the array (1, 2, or 3) and add those
that are needed.

"Out of Memory"

Leave the system by saving. Close Windows, restart it and then restart the
compilation.

i907 AC 1131/Issued: 10/99 Index 5

11 Index

A
ABS 10-30
Absolute Value 10-30
Access rights 4-31
Access Variables 6-2
ACOS 10-33
Action 2-9, 2-20, 2-21, 3-7, 4-32
Action Init 3-6
Active step 2-21
ADD 10-11
Address Function 10-23
Addresses 10-52
ADR 10-23
ALLIAS 10-9
Alternative Branch in SFC 2-24, 5-30
AND 10-13
Arc cosine 10-33
Arc sine 10-26 10-33
Arc tangent 10-34
Argument 2-2, 2-6
ARRAY 10-6
ASIN 10-33
Assignment 2-14, 5-18
Assignment Combs 5-20
Assignment operator 2-16
AT Declaration 5-4
ATAN 10-34
Auto Load 4-6
Auto Save 4-5
Autodeclaration 4-7, 5-6
Autoformat 4-7

B
Backup, automatic 4-5
Binding of ST operators 2-13
Bitmap 8-3, 8-13
Bitvalues 4-8
Body 5-1, 5-13, 5-14, 5-23, 5-29
Bookmark in Help 4-54
BOOL 10-5
BOOL Constants 10-49
BOOL_TO Conversions 10-24
Breakpoint 1-2, 2-28, 4-42, 5-10, 5-12, 5-36
Breakpoint Dialog Box 4-43
Breakpoint position 4-42
Build 4-11, 4-19
BYTE 10-5
BYTE Constants 10-50

C
CAL 10-24
Call tree 4-20, 4-32
Calling a function 2-2
Calling a function block 2-6, 2-14

Calling function blocks in ST 2-16
CASE 2-14
CASE instruction 2-17
CheckBounds 2-2, 10-7
CheckDivByte 2-3
CheckDivDWord 2-3
CheckDivWord 2-3
Coil 2-27, 5-25
Collapse Node 4-28
Colors 4-9, 8-7
Comment 5-7, 5-8, 5-15
Communication Parameters 4-46
Communications Parameters Gateway 4-47
Comparing projects 4-22
Compress 6-31
CONCAT 10-36
Concatenation 10-36
CONSTANT 5-3, 6-3
Constants 5-3
Contact 2-26, 5-24
Content Operator 10-7, 10-24
Context menu 4-4
Context Sensitive Help 4-55
Conversion of Integral Number Types 10-27
Conversions of types 10-24
Convert object 4-30
Copy 4-36
Copy in Help 4-53
Copying in FBD 5-21
COS 10-32
Cosine 10-32
Create Backup 4-5
Cross reference list 4-21, 4-33
CTD 10-43
CTU 10-42
CTUD 10-44
Cut 4-36
Cutting in FBD 5-21

D
Data types 2-10, 4-2, 10-5
DATE 10-6
DATE Constants 10-49
DATE_AND_TIME 10-6
DATE_AND_TIME Constants 10-50
DATE_TO Conversions 10-29
DCF file 6-3
DDE Interface 9-1
Debugger 5-10
Debugging 2-28, 4-11, 5-15
Declaration 3-4
Declaration Editor 5-1
Declaration Part 2-1, 5-1, 5-13, 5-14, 5-23, 5-29
Declarations as tables 4-7, 5-7
Declare Variable 4-40
Declare, automatic 4-7, 5-6
Defined Data Types 10-6
Delete 4-37
DELETE 10-37
Deleting a Transition 5-32
Deleting an Action 5-32

ii 907 AC 1131/Issued: 10/99Index5

Deleting in FBD 5-21
Dereferencing 10-7, 10-24
Desktop 4-8
DINT 10-5
DINT Constants 10-50
Directory 4-10
DIV 10-12

CheckDivByte 2-3
CheckDivDWord 2-3
CheckDivWord 2-3

Division durch 0 2-3
Document 4-17, 4-21
Document Frame 6-5
Download 4-13, 4-42, 4-51
Drag&Drop 4-28
DT 10-6
DT_TO Conversions 10-29
DWORD 10-5
DWORD Constants 10-50

E
Edit Menu

Copy 4-36
Cut 4-36, 5-22
Delete 4-37
Find 4-38
Find next 4-38
Input Assistant 4-39
Next error 4-40
Paste 4-37, 5-22
Previous error 4-40
Redo 4-35
Replace 4-38
Undo 4-35

Editing functions 4-35
Editor options 4-6
Editors 5-1, 5-13, 5-14, 5-23, 5-29
EN Input 2-27, 5-25
EN POU 2-27
END_FUNCTION_BLOCK 2-4
END_PROGRAM 2-8
END_TYPE 10-7, 10-8, 10-9
Entering Trace Variables 6-26
Entry action 5-31
Entry action 2-21
Enumeration 10-7
EQ 10-22
Error messages 10-59
EXIT 2-15, 2-20
Exit action 5-31
Exit action 2-21
EXP 10-31
Expand Node 4-28
Exponential Function 10-31
Exponentiation 10-34
Export 4-22
export file 6-3
Expression 2-13
EXPT 10-34
External library 4-16
Extras Menu

Align 8-15
Associate Action 5-35
Auto Read 6-28
Clear Action/Transition 5-32
Clear Background Bitmap 8-12 8-15
Compress 6-31
Configure 8-5
Cursor Mode 6-29
Edit Entry 6-25
Element list 8-16
Link Docuframe File 6-6
Load Trace 6-31
Load Watch List 6-33
Make Docuframe File 6-5
Monitoring Active 6-34
Monitoring Options 5-10
Multi Channel 6-30
Negate 5-20, 5-28
Options 5-15, 5-34
Paste above 5-27
Paste after 5-27, 5-32
Paste below 5-27
Paste Parallel Branch (right) 5-31
Previous version 4-35
Read Receipt 6-35
Read Trace 6-28
Rename Watch List 6-33
Save Trace 6-31
Save Watch List 6-33
Select All 8-15
Select Background Bitmap 8-15
Send to Back 8-15
Send to Front 8-15
Set Debug Task 6-25
Set/Reset 5-21, 5-28
Settings 8-16
SFC Overview 5-34
Show grid 6-30
Start Trace 6-28
Step Attributes 5-32
Stop Trace 6-28
Stretch 6-30
Time Overview 5-33
Trace Configuration 6-26
Trace in ASCII-file 6-31
Use IEC Steps 5-35
Write Receipt 6-35
Y Scaling 6-30
Zoom 5-21
Zoom Action/Transition 5-32

F
F_TRIG 10-42
falling edge 10-42
FBD 2-2, 2-7, 2-25, 4-43, 5-16
FBD Editor 5-16
Fields 2-1, 10-6
File 4-14
File Menu

Close 4-15
Exit 4-19

iii907 AC 1131/Issued: 10/99 Index 5

New 4-14
Open 4-14
Print 4-16
Printer Setup 4-17
Save 4-15
Save as 4-15

Find 4-38
FIND 10-38
Flow Control 4-46, 5-13
Folder 4-27, 4-28
Font 4-7
FOR 2-18
FOR loop 2-14, 2-18
Forcing 4-44, 5-8, 6-35
Formatting, automatic 4-7
Function 2-1, 10-53
FUNCTION 2-1
Function Block 2-4
Function block call 2-6
Function Block Diagram 2-2, 2-7, 4-43, 5-16
Function Block in FBD 5-19
Function block in LD 2-27
Function block, instance 2-5
Function call 2-2
Function declaration 2-1
Function in FBD 5-19
FUNCTION_BLOCK 2-4

G
Gateway 4-47
Gateway Server 4-47
GE 10-22
Global Constants 6-3
Global Retain Variables 6-3
Global Variables 6-1, 6-3
Graphic Editors 5-14
Grid 8-17
GT 10-21

H
Help 4-52
Help Menu

Contents and Index 4-52
Help Topics Window 4-52

I
Identifier 5-3, 10-51
IEC 1131-3 2-29
IEC Step 2-22, 5-35
IEC steps 2-23
Iecsfc.lib 2-22
IF instruction 2-14, 2-16
IL 2-2, 2-4, 2-6, 2-11, 4-42, 5-13
IL Editor 5-13
IL operator 2-11
Implicit at load 4-13
Implicit variables in SFC 2-23
Import 4-22

Index Window 4-54
INDEXOF 10-13
Initialization 5-3
Input and Output Variable 5-2
Input Assistant 4-39
Input in FBD 5-20
Input Variable 5-1
INSERT 10-37
Insert in LD 5-27
Insert in SFC 5-30
Insert Menu

Add Entry-Action 5-31
Add Exit-Action 5-31
Additional Library 7-2
All Instance Paths 6-4
Alternative Branch (left) 5-30
Alternative Branch (right) 5-30
Append Program Call 6-24
Append Task 6-24
Assignment 5-18
Bitmap 8-2, 8-3
Coil 5-25
Comment 5-15
Contact 5-24
Declarations Keywords 5-4
Ellipse 8-2, 8-3
Function 5-10, 5-19
Function Block 5-10, 5-19, 5-25
Function with EN 5-26
Input 5-20
Insert at Blocks 5-25, 5-26
Insert Program Call 6-24
Insert Task 6-24
Jump 5-18, 5-27, 5-31
Line 8-3
Network (after) 5-15
Network (before) 5-15
New Declaration 5-7
New Watch List 6-33
Operand 5-9
Operator 5-9, 5-18
Operator with EN 5-26
Output 5-20
Parallel Branch (left) 5-30
Parallel Branch (right) 5-30
Parallel Contact 5-24
Placeholder 4-19
Polygon 8-2, 8-3
Rectangle 8-2
RETURN 5-18, 5-27
Rounded Rectangle 8-2
Step Transition (after) 5-30
Step Transition (before) 5-29 5-30
Transition-Jump 5-31
Types 5-4
Visualization 8-2, 8-3

Insert mode 5-9
Insert Network 5-15
Instance 2-5
Instance name 2-5, 2-6
Instruction 2-11, 2-14, 2-15
Instruction List 2-2, 2-4, 2-6, 2-11, 4-42, 5-13

iv 907 AC 1131/Issued: 10/99Index5

INT 10-5
INT Constants 10-50
Internal library 4-16

J
Jump 2-25, 5-18
Jump in SFC 5-29, 5-31

K
Keywords 5-3, 5-4

L
Label 5-15
Ladder Diagram 2-26, 4-43, 5-23
LD 2-26, 4-43, 5-23
LD Editor 5-23
LE 10-22
LEFT 10-35
LEN 10-35
Library 2-10, 4-16
Library directory 4-10
Library Manager 3-4, 7-1
Library, Define 7-2
Library, Insert 7-2
LIMIT 10-20
Line number field 4-43, 4-46, 5-11
Line Number of the Text Editor 5-12
Line numbers 5-6
LN 10-31
Load & Save 4-5
Load Trace 6-31
Load trace configuration 6-27
Load Watch List 6-33
Local Variable 5-2
LOG 10-31
Log in 4-41
Logarithm 10-31
Logout 4-41
Loop 2-13, 2-15
LREAL 10-5
LREAL Constants 10-50
LREAL_TO Conversions 10-27
LT 10-21

M
Main Help Window 4-53
Main program 2-8
Mark 4-8
Marking in SFC 5-29
MAX 10-19
Memory location 10-52
Menu Bar 4-1
Menü Edit

Declare Variable 4-40
Menu Extras

Select Mode 8-16
Menü Extras

Show grid 6-30
Menu Insert

Curve 8-3
Menu Online

Communications Parameters Gateway 4-47
Sourcecode download 4-51

Menu Project
Add Action 4-32

Merge 4-23
Message window 4-3
MID 10-36
MIN 10-19
MOD 10-12
Modifier 2-11
Monitoring 2-29, 4-41, 5-7, 5-10, 6-34
MUL 10-11
Multi Channel 6-30
MUX 10-20

N
NE 10-23
Negation in FBD 5-20
Negation in LD 5-28
Network 5-15, 5-16
Network Comment 5-15
Network in FBD 2-25, 3-2
Network in LD 2-26
Network in SFC 3-6
Network number field 4-43, 4-46
New Folder 4-28
Next error 4-40
NOT 10-15
Note in Help 4-53
Notice at load 4-13
Number Constants 10-50
Number of data segments 4-12

O
Object 2-1, 4-27
Object Organizer 4-2
Online 1-1, 1-2, 5-10, 5-15, 6-34
Online Change 4-11, 4-20, 4-25
Online functions 4-41
Online in Security mode 4-9
Online Menu

Breakpoint Dialog Box 4-43
Communication Parameters 4-46
Download 4-42
Force values 4-44
Log in 4-41
Logout 4-41
Release Force 4-45
Reset 4-42
Run 4-42
Show Call Stack 4-45
Simulation 4-46
Single Cycle 4-44
Step in 4-44
Step over 4-44
Stop 4-42

v907 AC 1131/Issued: 10/99 Index 5

Toggle Breakpoint 4-42
Write values 4-44

Online Mode 4-41
Declaration Editor 5-7
Function Block Diagram Editor 5-22
Ladder Editor 5-28
Network Editor 5-15
Sequential Function Chart Editor 5-36
Text Editor 5-10
Watch- and Receipt Manager 6-34

Operand 2-2, 5-9, 10-49
Operating Version 8-11
Operator in FBD 3-4, 5-18
Operators 5-9, 10-11
Options 4-4
OR 10-14
Output in FBD 5-20
Output Variable 5-2
Overwrite mode 5-9

P
Parallel Branch in SFC 2-25, 5-30
Parallel Contacts 2-26, 5-24
Password 4-12
Passwords for user groups 4-26
Pasting 4-37
Pasting in FBD 5-21
Placeholder 4-19
PLC 4-41, 4-45
PLC Configuration 6-6
PLC_PRG 2-8
Pointer 10-7
POINTER 10-7
POU (Program Organization Unit) 1-1, 2-8, 3-1, 4-2
Presentation 8-17
Previous error 4-40
Previous version 4-35
Print 4-16
Print in Help 4-53
Program 2-7
PROGRAM 2-8
Program call 2-7
Project 1-1, 2-1, 2-7, 3-1
Project directory 4-10
Project info 4-5, 4-23
Project Menu

Add object 4-29
Build 4-19
Check 4-19
Convert object 4-30
Copy object 4-30
Delete Object 4-28
Document 4-21
Export 4-22
Global Replace 4-25
Global Search 4-25
Import 4-22
Merge 4-23
Object access rights 4-31
Open object 4-30
Options 4-4

Passwords for user groups 4-26
Project info 4-23
Rebuild all 4-20
Register Changes 4-25
Rename object 4-29
Show call tree 4-32
Show cross reference list 4-33
Show unused variables 4-34
View instance 4-32

Project version 1.5 4-16

Q
Qualifier 2-23

R
R_TRIG 10-41
Read Receipt 6-35
Read trace 6-27
Read Trace 6-28
READ_ONLY 6-2
READ_WRITE 6-2
REAL 10-5
REAL Constants 10-50
REAL_TO Conversions 10-27
Receipt Manager 6-32
Redo 4-35
References 10-9
Register Changes 4-25
REPEAT 2-15
REPEAT loop 2-19
Replace 4-25, 4-38
REPLACE 10-38
Reset 4-42
Reset Output 5-21, 5-28
Resources 2-10, 4-2, 6-1
RETAIN 5-2, 6-3
Retain Variable 5-2
RETURN 2-14, 2-16, 5-18
RIGHT 10-35
rising edge 10-41
ROL 10-17
ROR 10-18
Rotation 10-17, 10-18
RS 10-40
Run 4-42

S
Sample Rate 6-27
Sampling Trace 2-28, 6-25
Save 4-15
Save before compile 4-12
Save Trace 6-31
Screen divider 4-3
SEL 10-19
Selecting 4-8
SEMA 10-40
Sequential Function Chart 2-2, 2-7, 2-20, 3-6, 4-43,

5-29

vi 907 AC 1131/Issued: 10/99Index5

Set Output 5-21, 5-28
Set/Reset coils 2-27
SFC 2-2, 2-7, 2-20, 3-6, 4-43, 5-29
SFC Editor 5-29
SFC Flags 2-24
SFC library 2-22
SFC Overview 5-34
SFCCurrentStep 2-24
SFCEnableLimit 2-24
SFCError 2-24
SFCErrorPOU 2-24
SFCErrorStep 2-24
SFCInit 2-24
SFCPause 2-24
SFCQuitError 2-24
SFCTrans 2-24
Shift 10-15
SHL 10-15
Shortcut Mode 5-5
Show Call Stack 4-45
Show grid 6-30
SHR 10-16
Simulation 2-29, 3-14, 4-41, 4-46
SIN 10-32
Sine 10-32
Single Cycle 4-44
Single Step 2-28, 4-44, 5-36
SINT 10-5
SINT Constants 10-50
SIZEOF 10-13
Sourcecode download 4-51
Sourcedownload 4-13
SQRT 10-30
Square Root 10-30
SR 10-39
ST 2-2, 2-6, 2-13, 4-42, 5-14
ST Editor 5-14
ST operand 2-13
ST operator 2-13
Standard Function 7-2
Standard Library 3-4, 7-2
Standard POUs 2-1
Standard.lib 7-2
Start Trace 6-28
Statistics 4-24
Status bar 4-3, 4-9, 8-5
Step 2-20, 4-43, 5-29
Step Attributes 5-32
Step Init 2-21
Stepping 5-10, 5-15, 5-36
Stop 4-42
Stop Trace 6-28
Stretch 6-30
STRING 10-6
STRING Constants 10-50
String Functions 10-35
STRING_TO Conversions 10-29
STRUCT 10-8
Structured Text 2-2, 2-6, 2-13, 4-42, 5-14
Structures 2-1, 10-8
SUB 10-11
Syntax Coloring 5-1, 5-5

System Flag 10-51

T
Tab-width 4-7
TAN 10-32
Tangent 10-32
Task Configuration 6-22
Text Editors 5-8
TIME 10-6
TIME Constants 10-49
Time Management in SFC Editor 5-33
TIME_OF_DAY 10-6
TIME_OF_DAY Constants 10-49
TIME_TO Conversions 10-28
Timer 10-45
TO_BOOL Conversions 10-26
TOD 10-6
TOD_TO Conversions 10-28
TOF 10-47
TON 10-46
Tool bar 4-2, 4-9
Tooltip 4-2, 4-27, 5-8, 5-10, 5-16, 5-22, 5-28
TP 3-4, 10-45
Trace Buffer 6-25, 6-29
Trace in ASCII-file 6-31
Trace Variable 6-28
Trace, Automatically Read 6-28
Transition 2-21, 5-29
Trigger 2-28, 6-27, 10-41
Trigger Edge 6-27
Trigger Level 6-27
Trigger Position 6-27
TRUNC 10-29
TYPE 10-7, 10-8, 10-9
Type Conversions 10-24
Types 5-4

U
UDINT 10-5
UDINT Constants 10-50
UINT 10-5
UINT Constants 10-50
Undo 4-35
Unused variables 4-21
User group 4-26
User information 4-6
USINT 10-5
USINT Constants 10-50

V
VAR 5-2, 5-6
VAR_ACCESS 6-2
VAR_CONFIG 6-2, 6-4
VAR_GLOBAL 5-6, 6-2, 6-3
VAR_IN_OUT 5-2
VAR_INOUT 5-6
VAR_INPUT 5-1, 5-6
VAR_OUTPUT 5-2, 5-6

vii907 AC 1131/Issued: 10/99 Index 5

Variable Configuration 6-3
Variables 10-51
Variables declaration 5-3
Visualization 2-11, 4-2, 8-1

Bitmap 8-13
Colors 8-7
File - Print 8-19
Input 8-10
Input possibilities for the operating version 8-11
Motion absolute 8-8
Motion relative 8-8
Operation in online mode 8-19
Operation over the keyboard 8-19
Shape 8-6
Text 8-6
Tooltip 8-13
Variables 8-9

Visualization Elements, Configure 8-5
Visualization Elements, Copy 8-4
Visualization Elements, Insert 8-2
Visualization Elements, Shift, Move 8-4

W
Watch and Receipt Manager 6-32
Watch and Receipt Manager Offline 6-32
Watch and Receipt Manager Online 6-34
Watch List 6-32
Watch Variable 5-8, 5-22
WHILE loop 2-14, 2-18
Window 4-51
Window Menu

Arrange symbols 4-52
Cascade 4-51
Close all 4-52
Library Manager 7-1
Messages 4-52
Tile Horizontal 4-51
Tile Vertical 4-51

WORD 10-5
WORD Constants 10-50
Work space 4-3
Write protection password 4-12
Write Receipt 6-35

X
XOR 10-14

Y
Y Scaling 6-30

Z
Zoom 5-21
Zoom Action 5-32
Zoom Transition 5-32

ABB STOTZ-KONTAKT GmbH
Eppelheimer Straße 82 Postfach 101680
D-69123 Heidelberg D-69006 Heidelberg

Telephone +49 6221 701-0
Telefax +49 6221 701-1111
E-Mail desst.helpline@de.abb.com
Internet http://www.abb.de/sst

	Return to Overview
	Operating Manual (Title page)
	Table of contents
	1 A Brief Introduction to 907 AC 1131
	1.1 What is 907 AC 1131
	1.2 Overview of 907 AC 1131 Functions

	2 What is What in 907 AC 1131
	2.1 Project Components
	2.2 Languages
	2.2.1 Instruction List (IL)
	2.2.2 Structured Text (ST)
	2.2.3 Sequential Function Chart (SFC)
	2.2.4 Function Block Diagram (FBD)
	2.2.5 Ladder Diagram (LD)

	2.3 Debugging, Online Functions
	2.4 The Standard

	3 We Write a Little Program
	3.1 Controlling a Traffic Signal Unit
	3.2 Visualizing a Traffic Signal Unit

	4 The Individual Components
	4.1 The Main Window
	4.2 Options
	4.3 Managing Projects
	4.4 Creating and Deleting Objects, etc.
	4.5 General Editing Functions
	4.6 General Online Functions
	4.7 Window set up
	4.8 Help when you need it

	5 Editors in 907 AC 1131
	5.1 The Declaration Editor
	5.2 The Text Editors
	5.2.1 The Instruction List Editor
	5.2.2 The Editor for Structured Text

	5.3 The Graphic Editors
	5.3.1 The Function Block Diagram Editor
	5.3.2 The Ladder Editor
	5.3.3 The Sequential Function Chart Editor

	6 The Resources
	6.1 Overview of the Resources
	6.2 Global Variables
	6.2.1 Access Variables
	6.2.2 Global Variables
	6.2.3 Variable Configuration
	6.2.4 Document Frame

	6.3 PLC Configuration
	6.3.1 Working in the PLC Configuration
	6.3.2 Doing the PROFIBUS-DP Configuration

	6.4 Task Configuration
	6.5 Sampling Trace
	6.6 Watch and Receipt Manager

	7 Library Manager
	8 Visualization
	8.1 Create Visualization
	8.2 Visualization Elements, Insert
	8.3 Working with Visualization Elements
	8.4 Visualization Elements, Configure
	8.5 Additional Visualization Element Functions

	9 DDE Interface
	10 Appendix
	Appendix A: Use of Keyboard
	Appendix B: Data types
	Appendix C: IEC Operators
	IEC Operators
	ADD
	MUL
	SUB
	DIV
	MOD
	INDEXOF
	SIZEOF

	Bitstring Operators
	AND
	OR
	XOR
	NOT

	Bit-Shift Operators
	SHL
	SHR
	ROL
	ROR

	Selection Operators
	SEL
	MAX
	MIN
	LIMIT
	MUX

	Comparison Operators
	GT
	LT
	LE
	GE
	EQ
	NE

	Address Operators
	ADR

	Calling Operator
	CAL

	Type Conversion Functions
	BOOL_TO Conversions
	TO_BOOL Conversions
	REAL_TO-/ LREAL_TO Conversions
	TIME_TO/TIME_OF_DAY Conversions
	 DATE_TO/DT_TO Conversions
	STRING_TO Conversions
	TRUNC

	Numeric Functions
	ABS
	SQRT
	LN
	LOG
	EXP
	SIN
	COS
	TAN
	ASIN
	ACOS
	ATAN
	EXPT

	Appendix D: Standard Library Elements
	String Functions
	LEN
	LEFT
	RIGHT
	MID
	CONCAT
	INSERT
	DELETE
	REPLACE
	FIND

	Bistable Function Blocks
	SR
	RS
	SEMA

	Trigger
	R_TRIG
	F_TRIG

	Counter
	CTU
	CTD
	CTUD

	Timer
	TP
	TON
	TOF

	Appendix E: Operands in 907 AC 1131
	Operands
	Constants
	BOOL Constants
	TIME Constants
	DATE Constants
	TIME_OF_DAY Constants
	DATE_AND_TIME Constants
	Number Constants
	REAL/LREAL Constants
	STRING Constants

	Variables
	System Flags

	Addresses
	Address
	Memory location

	Functions

	Appendix F: Command Line/Command File Commands
	Command Line Commands
	Command File (cmdfile) Commands

	Appendix G: Error messages

	11 Index

