

ABB EXCITATION SYSTEMS **UNITROL[®] 1005** Quick installation guide

Safety instructions

Read and obey the safety instructions in the User Manual.

- Obey the safety instructions to prevent physical injury or death, or damage to the equipment.
- Read and make sure that you understand the operating and safety instructions before you operate the unit.
 - If you are not a qualified electrician, do not do electrical installation or maintenance work.
 - Use personal protective equipment, such as, safety shoes and gloves.

Obey these safety precautions before you do work on the system:

- 1. Clearly identify the work location and equipment.
- 2. Disconnect all possible voltage sources. Make sure that connection is not possible. Lock out and tag out.
 - Open the main disconnecting device of the AVR.
 - Disconnect any external power sources from the control circuits before you do work on the control cables.
 - If you have a permanent magnet generator connected to the AVR, disconnect it from the AVR with a safety switch or by other means
 - After you disconnect the AVR, which a safety switch or by other means.
 After you disconnect the AVR, wait for 5 minutes to let the intermediate circuit connections discharge before you continue.
- circuit capacitors discharge before you continue.
- 3. Protect any other energized parts in the work location against contact.
- 4. Take special precautions when you are near bare conductors.
- 5. Measure that the installation is de-energized.
 - Use a multimeter with an impedance of at least 1 Mohm.
 Make sure that the voltage between the AVR input power terminals (PWR L1, PWR L2, PWR L3 and PWR L4) and the grounding terminal (PE) is near 0 V.
 - Make sure that the voltage between the AVR output terminals (IE+ and IE-) and the grounding (PE) is near 0 V.
- 6. Install temporary grounding as required by the local regulations.
- 7. Ask for a permit to work from the person in control of the electrical installation work.

Residual danger areas

When the AVR operates,

- The voltage in the power section can be up to 300 V AC and the short-circuit current is very high.
- The voltage in the control cabinet is more than 50 V.

When the AVR is disconnected from power supplies, the large capacitors in the AVR hold a charge for some time. Wait for at least 5 minutes for the capacitors to discharge before you do work on the AVR.

Warning labels are attached to all of the cubicle doors to warn personnel against opening the doors during operation.

If the device is built into a larger system, additional warning labels are attached to the inside of the cubicle doors and to the covers of the power converter modules.

Product package

Contents of the product package:

- UNITROL 1005 AVR
- Special red USB cable that is used to power and to connect with the AVR. Keep this USB cable in a safe place.
- Quick installation guide and test certificate

Make sure that all of the listed items are in the product package and that there is no damage to the items.

Hardware overview

Primary parts of the AVR. Refer to the User Manual for more information.

No.	Description	No.	Description
1	Mounting holes	6	Power terminals
2	Unit type designation	7	Measurement terminals
3	Front cover	8	Digital and analog I/Os
4	Ethernet port	9	Status LEDs
5	USB port	10	Heat sink

Status indicators

Color	Description
Green	Operating status ON: Device controllers are active Flashes: Device software is active
Yellow	Excitation status ON: Excitation is active Flashes: A limiter is active
Red	Alarm status ON: An alarm or a trip is active Flashes: • Startup failure • Parameter download failure • Excitation output is blocked

Mechanical installation

For detailed information on mechanical installation, refer to the *User Manual*. Install the AVR in an indoor area that is dry and dust-free, and that does not contain volatile gases, acid fumes or similar hazards.

Examine the installation area and refer to technical data to make sure that:

- The maximum ambient temperature is in the permitted range
- The vibration is limited and within the permitted class.
- The ingress protection and pollution degree are suitable.
- The EMC environment is suitable.

Installation requirements:

- Free space requirements:
- 10 mm on the terminal side of the AVR
- 30 mm on the other sides of the AVR
- Make sure that there is sufficient cooling air flow around the AVR.
- Make sure that other devices do not blow hot air on to the AVR.
- The AVR is designed to be installed with suitable hardware to an installation plate.
- Make sure that the frame of the AVR is electrically grounded (PE) to the installation plate with a grounding wire (≥4 mm²) through a mounting hole. Use toothed washers to get a good electrical ground contact.

Installation procedure:

- 1. Refer to Dimensions for the mounting hole dimensions.
- 2. Make the appropriate holes in the installation plate.
- Attach the AVR to the installation plate with suitable hardware, for example, M6 screws to a torque of 10 Nm. The mounting holes have a diameter of 6.5 mm.
- Make sure that there is a good electrical ground connection between the installation plate and the AVR. The installation plate must be electrically grounded (PE).

Electrical installation

For detailed information on electrical installation, refer to the User Manual.

 $\label{eq:CAUTION!} \mbox{Separate control (I/O) cables from the excitation (power and measurement) cables to avoid electromagnetic interference.$

Cable dimension requirements:

Connection type	Cross-section area requirement			
Excitation cables Terminals 1 to 15	0.2 to 4 mm ²	AWG 24 to AWG 10		
Control cables (I/O) Terminals 21 to 53	0.2 to 2.5 mm ²	AWG 24 to AWG 12		

Grounding

Connect the AVR to the protective earth at terminal 1 with a 4 mm^2 grounding wire.

Make an additional grounding connection through the mounting holes to the installation plate (if it is connected to the protective earth) or with a 4 mm² cable to the protective earth.

Make sure that the grounding connections are as short as possible. Additional signal ground terminals are provided for the control cables.

Inrush current limitation

The large internal DC capacitor of the AVR can cause a high inrush current especially with a strong voltage source.

WARNING! To prevent damage to the AVR, make sure that the inrush current is not more than 100 A for 10 ms.

To prevent damage to the AVR from a high inrush current:

Method	Description
Shunt supply	The excitation power is taken from the generator output over a shund transformer. Use an excitation supply transformer with a maximum power of 3 kVA.
PMG supply	The excitation power is taken from a permanent magnet generator (PMG). The maximum permitted output power of the PMG is 3 kVA.
Auxiliary windings	The excitation power is taken from an additional stator winding of the generator.
DC battery	The excitation power is taken from a battery. Limit the inrush current with a resistor.

To calculate the inrush current, you can use a capacitor voltage of 0 V at startup. The external resistor for a 200 V AC input is typically 1.5 $\Omega.$

Power and measurement terminals

Terminals		Туре	Ref.	Label	Description		
T	PE	1		Power	1	PE	Protective earth
	PWRL1	2			2	PWR L1	Input power L1
	PWRL2	8	II BO		3	PWR L2	Input power L2
Power	PWRL3	4	II BO		4	PWR L3	Input power L3
	PWRL4	5	I BO		5	PWR L4	Input power L4
	1E+	•			6	IE +	Excitation current +
-	IE-				7	IE -	Excitation current -
	ML1	8	L BO	Measurement	8	ML1	Machine voltage L1
	ML2	9	T BO		9	ML2	Machine voltage L2
	MLØ	10	I BO		10	ML3	Machine voltage L3
nemen	NW1	11	I BO		11	NW1	Network voltage L1
ł	NWS	12	II BO	terminals	12	NW3	Network voltage L3
	MC2+ (MA)	13	TT BOO		13	MC2+ (5A)	Machine current 5A+
	MGR+ (1A)	14	TT BO		14	MC2+ (1A)	Machine current 1A+
	MC2-	18	DE		15	MC2-	Machine current -

Commissioning

For detailed instructions on commissioning, refer to the User Manual.

- Commissioning procedure overview:
- 1. Make sure that all of the connections are correct and safe.
- 2. Download the configuration file to the AVR. Make sure that the parameters are correct.
- 3. Examine the digital and analog I/Os in standstill.
- 4. Do tests with the machine:
 - a) Standstill
- Measure resistance of exciter stator winding
- b) No load condition
- Increase the speed of the machine to nominal.
- Start excitation in Manual mode and increase the manual setpoint until machine voltage is 50%.
- Use CMT 1000 to verify the AVR measurements and compare them with other equipment used, such as protection devices.
- Increase the setpoint until the machine voltage is 100% and tune the AVR with the AVR tuning assistant.
- Do step response tests to examine performance in Manual mode and Auto mode.

d) Do step response tests to examine performance in Auto mode and direct

a) Save the parameters on the AVR and verify the status with CMT 1000.

c) Machine connected to grid

VAR regulator modes.

Finalizing commissioning

Select AUTO (voltage regulator).
 Increase the AUTO setpoint to verify the polarity of the of I_M

measurement. Q must increase

b) Save backup files for project documentation.

Consider the residual danger areas when you do work on the excitation system:

- Danger from live equipment inside the excitation system, if the protective covers are removed.
- Hazardous voltages from the rotor field winding and the secondary side of the excitation transformer.
- Danger from charged capacitors if a cabinet door is open immediately after the system stops.
- Danger from main and auxiliary voltages when the cabinet doors are open.

Introduction

This document is a quick installation guide for the UNITROL 1005 automatic voltage regulator. Make sure that you read and understand this document before you install or use the product. This document is meant only as a brief guide to the product. For detailed information on the product, refer to the *User Manual*.

Device description

UNITROL 1005 is an automatic voltage regulator (AVR) for synchronous machines up to 80 MVA. The AVR can be used for the excitation of indirectly excited synchronous machines and motors. The AVR can also operate as a reactive power regulator, power factor regulator or field current regulator.

No.	Description	No.	Description
1	Digital inputs and outputs Max. cable length 30 m	7	Measurement and control unit (DSP)
2	Analog inputs Max. cable length 30 m	8	Power electronic control (PWM)
3	Network voltage measurement U _{NET}	9	Communication MCU
4	Machine voltage measurement U _M	10	USB connection Max. cable length 3 m
5	Machine current measurement I _{M2}	11	Ethernet connection Max. cable length 100 m
6	Excitation output I _e & U _e	12	Excitation Power Supply input PWR L1–L4

WARNING! To prevent unstable regulation and damage to the machine, do tests for all used regulator modes and limiters.

CMT 1000 commissioning and maintenance tool

🦉 CMT 1000					2
File Monitor	Setup	Communication	Tune	Help	
OFFLINE					
MONITOR		J		Monitor	
CONTROL		E	AV	R1 - Main	EEPROM 🔕
AB				145 555	CMT1000 for: UNITROL 1005

You can set the parameters of the AVR with the CMT 1000 commissioning and maintenance tool PC application for Microsoft Windows. CMT 1000 connects to the AVR through the USB port or Ethernet port. An Ethernet connection permits access to the AVR from remote locations. For more information on CMT 1000, refer to the *User Manual*.

Operation

The AVR is controlled by analog and digital I/Os. You can also use control signals by remote access over MODBUS.

Use CMT 1000 only to set parameters and operation and not as an operator interface.

For detailed information on operation, refer to the User Manual.

Technical data

	UNITROL 1005
Ingress protection	IP20
Power electronic output	
AC nominal input voltage	16 to 250 V AC
Frequency	25 to 600 Hz
DC nominal input voltage	18 to 300 V DC
Maximum peak input voltage (non-sinusoidal)	420 V _P
Minimum required start voltage	6 V AC / 16 V DC
Auxiliary supply for controller only	
DC nominal input voltage	18 to 30 V DC
Excitation output	
Continuous current at 55 °C	8 A DC
Overload current for 10 seconds at 55 °C	16 A DC
Exciter current measurements	
Full range	0 to 25 A
Accuracy / Resolution	< 1% / < 20 mA
Machine and net measurements	
Machine voltage, 1-, 2-, or 3-phase	Up to 500 V AC
Machine current, 1-phase	1 to 5 A AC
Network voltage, 1-phase	Up to 500 V AC
Frequency range	10 to 150 Hz
Accuracy (-40 °C to 70 °C / at 25 °C)	±1% / 0.1%
Voltage regulation	
AVR response time (3-phase / 1-phase measurement)	< 20 ms / < 50 ms
PWM limitation	0.5 to 99%
Digital inputs and outputs	
Number of digital inputs and outputs input only / in or out / output only	8/0/4
Digital I/O voltage	24 V
Analog inputs and outputs	
Number of analog inputs / outputs	2/0
Analog I/O range	±10 V / 020 mA
Communication interfaces	
Ethernet (cable length < 100 m)	10 / 100 MBit/s
USB version (use the supplied red USB cable only)	1.0, 1.1, 2.0
CAN (cable length < 3 m)	Not supported

Dimensions

Device connections

Terminal	Signal	Circuit
1 = PE	Protective earth	
	Power electronics and control	Absolute max, values
0.000014	supply U _{PWR}	
2 = PWR L1 3 = PWR L2	Main L1 Main L2	16300 V AC
4 = PWR L3	• Main L3	—
5 = PWR L4	Main L4	16300 V AC 5 1~
	Note: To get a 6 V AC start level.	
	use L1 and L2.	16 300 V DC 2=
		10
	E stratta a sur a sur a sur	
6 = IE+	 Excitation current output l_e Exciter current + 	External
7 = IE-	Exciter current -	0 to 300 V DC
		3A <u>}(</u> €)
		IE- 🔶 🖳 💛
	Machine voltage three-phase U _M	
8 = ML1	Machine L1	External
9 = ML2 10 = ML3	Machine L2 Machine L3	
10 - 1125		↓ ┿╼═╾┘┿═══──┆ ML3
	Market and a start start start	1) max. 500 V / 0.2 VA
13.14 = MC2+	 Machine current single-phase I_{M2} Machine current + 	(SM)
15 = MC2-	 Machine current - 	мс2+
	Machine voltage single shace !!	• IM2 A MC2-
8 = ML1	Main L1	1) max. 500 V / 0.2 VA
10 = ML3	• Main L3	External
	Machine voltage three-phase	ML1 ML3
	with ground U _M	1) max. 500 V / 0.2 VA
8 = ML1	Machine L1 Machine L2	External — — — — —
10 = MI3	Machine L3	
		+∮ U + → ∧ ML3
	1) You must ground PT & CTs.	L1 L2 L3 1) max. 500 V / 0.2 VA
	Line voltage measurement	
	single-phase U _{NET}	
11 = NW1 12 = NW3	Network L1 Network L3	• • NW3
12 - 1115		1) max. 500 V / 0.2 VA
	1) You must ground PT & CTs.	,
	Digital output, potential free	External
22 = OA1 23 = OB1	 Digital output 1, collector Digital output 1, emitter 	01A
25 = OA2	 Digital output 2, collector 	36
26 = OB2	 Digital output 2, emitter 	max. 50 mA
	24 V supply for external contacts	
27 20 22 26	- 24 V DC output (max E0 mA)	
27, 30, 33, 36, 39 = Vn	 Alternatively supply for 	
	internal controller	II I max 50 mA
21 24 42 45	Digital ground connected to	
48 = Gn	PE	
	Digital output	External
28 = DO3	Digital output 3 Digital output 4	Ext Pwr
23 - 004	Digital output 4	VX Supply 24 V DC
21 = G1	Digital ground, connected to	
24 = 62	 Digital ground, connected to 	
	PE	DOx max. 200 mA
	Note: The open collector	——Қ † +
	transistor can switch up to	Gx
	500 mA peak and 200 mA	<u>1</u>
	continuousiy	
	Digital input	Futernal
31 = DI5	Digital input 5	External 24 V
32 = DI6 34 = DI7	 Digital input 6 Digital input 7 	2028 V DC ^{V×} ↔ ↔ ↔ ↔ ↔
35 = DI8	 Digital input 8 	<u> </u>
37 = DI9 38 = DI10	 Digital input 9 Digital input 10 	
40 = D111	Digital input 11	
41 = DI12	Digital input 12	└───Ŷ <u>⊥</u> ▀▀ <u>↓</u> ∦┌┤└^DC
30 = V3	24 V power	gx ↓↓ ↓↓↓↓↓
33 = V4	24 V power	
36 = V5 39 = V6	 24 V power 24 V power 	
55 - VO	- 27 1 00000	
	Note: The 24 V terminals can be	
	used to power the AVR controller.	

Note: The internal 24 V supply (V1 to V6) can be loaded with a maximum of 50 mA by all used digital inputs and outputs. If the load is higher, use an external power supply.

Terminal	Signal	Circuit
44 = Al1 43 = Bl1 50 = Al2 49 = Bl2	Analog inputs ±10 V DC Alx/Blx Signal bandwidth 100 Hz	External Alx + 1.1 Meg Blx . 1.1 Meg max ±10 V
51 = RP 42, 45, 48 = Gx	+10 V pos Ref GND Positive Reference R = 10 kOhm Input range 0 V to 9.1 V	External
44 = Al1, 43 = Bl1 50 = Al2, 49 = Bl2 47 = CP1, 46 = CN1 53 = CP2, 52 = CN1	Analog inputs 20 mA Alx/Blx ; CPn/CNn Signal bandwidth 100 Hz Add bridge between CPx and CNx to enable 20 mA input.	External Max. 20 mA
44 = Al1, 43 = Bl1 50 = Al2, 49 = Bl2 51 = RP	Analog inputs digitally assigned Alx/Blx Refer to the <i>User Manual</i> Note: If both switches are activated at the same time, none of the digital inputs are activated.	RP 10 V DC Alx 1.1 Meg Blx 1.1 Meg Ain

Certifications

The applicable certifications are shown on the type label of the device.

Related documents

Document	Code
UNITROL® 1005 User Manual (English)	3BHS581681 E81
UNITROL® 1000 Control SW manual (English)	3BHS399489 E02
UNITROL® 1000 Commissioning instructions (English)	3BHS399489 E01
UN1000 Modbus Address table (English)	3BHS358281 E81
UN1000 Modbus Reference Manual (English)	3BHS358281 E80
UN1000 Railway Type Test Summary (English)	3BHS258571 E44
UN1000 Type Test Summary (English)	3BHS258571 E41
Release Notes HW/SW (English)	3BHS355555 E02

Support information

ABB Switzerland Ltd

Static Excitation Systems, Voltage Regulators and Synchronizing Equipment CH-5300 Turgi / Switzerland

Internet: http://www.abb.com/unitrol

24 h hotline for urgent service inquiries: +41 844 845 845

E-mail contact for questions and support:

unitrol1000.supportline@ch.abb.com

Documentation, software and tools

You can get access to the latest documentation, software and tools for the AVR on the myABB business portal. To get access:

- 1. Go to https://myportal.abb.com in your web browser.
- 2. Select Log In.
 - If you have an ABB account, you can sign in with your email and password.
 - If you do not have an ABB account, refer to How to register to the myABB business portal.
 - 3. After you log in, the myABB dashboard opens.
 - On the myABB dashboard, find the myExcitation widget. For information on 4. how to register to the myExcitation widget, refer to How to register to the myExcitation widget.
 - In the myExcitation widget in the myABB business portal, select GO TO ABB LIBRARY. 5.

myABB dashboard > ABB Library

ABB Library

Category

ABB Products

Power Electronics

UNITROL 1000

UNITROL 1005

UNITROL 1010

UNITROL 1020

Systems

All Categories

- 6. ABB Library opens.
- 7. In the left-hand menu, select Category > ABB products > Power Electronics UNITROL Excitation Systems > UNITROL 1000 > UNITROL 1005.
- 8. Select your documentation. You can search for documents by categories and by document kind.
- 9. You can also download the documents to your computer.

How to register to the myABB business portal:

- UNITROL® Excitation
- 1. Select Sign up below the LOGIN button.
- 2. Fill in the registration form.
- 3. Select Sign up.
- ABB sends you an email for activation of 4.
- your ABB account. 5.
- In the email, select ACTIVATE ACCOUNT.
- 6. You now have an access to the myABB business portal.

How to register to the myExcitation widget:

- In the myExcitation widget in the myABB business portal, select GET 1. ACCESS.
- 2. Fill in the registration form.
- 3. After registration, you can get access to UNITROL 1000 series documents and tools on the ABB Library.